
3. Deterministic Verification
Preliminary quantitative precipitation forecasts (QPFs) 
analysis using traditional scores

The two traditional verification statistics used were the frequency bias (FBIAS) and 
the Gilbert Skill Score (GSS), in Figures 4 and 5, respectively. Each statistic was cre-
ated from a 14-month period of precipation data from April 2009 to May 2010. Sev-
eral different thresholds were used ranging from 0.1mm to 75.0mm.

Conclusion:
The current operational NAM model underforecasts (FBIAS <1) and has a displace-
ment error (low GSS), as shown in Figure 3. For the NSSL-WRF run, in particular, 
we still have the displacement error (low GSS), but we are more successful at predict-
ing whether an event would occur or not (FBIAS close to 1). So can we correct for 
errors in displacement? 

As with the NAM model, for all three model runs, we still have a discrepancy be-
tween the warm and cold seasons, as well as, with the lower and higher thresholds. 
The warm seasons and the higher thresholds still produce more variable and less skill-
ful results.  

1. Introduction
Why is this important?
Flash flooding is the #1 weather-related killer 
(Figure 1). It is very difficult to anticipate. Forecast-
ers and researchers can use the results of this project 
to work towards increasing public safety.

We need better prediction of flooding. Warm season 
precipitation has low threat scores (Figure 2). Unfor-
tunately, the majority of flooding occurs during the 
warm season.

Traditional numerical guidance has shortcomings. It 
is low resolution. For example, the NCEP/EMC 
NAM model uses 12-km grid spacing, requiring pa-
rameterization of thunderstorms. Due in part to this 
limitation, it forecasts heavy precipitation events 
poorly (Fig. 3), suffering from both displacement 
errors and under-forecasting of event frequency.

Figure 4. Graphs of the frequency biases (FBIAS). The left side shows two thresholds (top: 
1.0mm, bottom: 25.0mm) by month. The right side shows a warm month (top: August) and cold 
month (bottom: February) with all thresholds. The 25.0mm (~1”) threshold is highlighted with 
the red line. For all graphs, the ideal score of 1 is bolded.

Figure 1. Graph showing 10-year and 30-year averages of 
weather-related fatalities from 2000-2009 and 1980-2009, re-
spectively. Flooding is circled in yellow to show that it has the 
highest 30-year average, thus, being the deadliest over the long 
term. Source: NWS.

Abstract
Scientists at the NOAA/OAR/National Severe Storms Labora-
tory (NSSL) have been using a CONUS-scale, convection-
allowing (4 km grid spacing) configuration of the Weather Re-
search and Forecasting (WRF) model for daily real-time fore-
casting since 2006 (hereafter NSSL-WRF).  Output from these 
forecasts has been provided to the NOAA/NWS/NCEP/Storm 
Prediction Center (SPC) and numerous local NWS offices, and 
has proven to be very useful as guidance for the prediction of 
severe weather (e.g., tornadoes, large hail, damaging winds).  
Over the last year, in collaboration with scientists and forecast-
ers from the NOAA/NWS/NCEP/Hydrometeorological Pre-
diction Center (HPC), we have begun to investigate the poten-
tial utility of these forecasts as guidance for the prediction of 
heavy rainfall.  

In the first stage of this work, quantitative precipitation fore-
casts from the NSSL-WRF are compared to corresponding 
output from two additional realtime 4-km forecasts. Both of 
these are generated at NCEP/EMC; one is  provided to the SPC 
on a daily basis like the NSSL-WRF and the other is under de-
velopment for similar applications. This initial comparison in-
dicates that the NSSL-WRF forecasts compare favorably to the 
forecasts from the 4-km EMC configurations.  Thus, the 
NSSL-WRF forecasts are explored further. Like coarser resolu-
tion, convection-parameterizing models that are run operation-
ally by the NWS, the NSSL-WRF configuration typically suf-
fers from placement errors in predicting the location of heavy 
rainfall.  Compared to the coarser resolution models, however, 
the NSSL-WRF is relatively accurate in predicting the fre-
quency of heavy precipitation amounts.  For example, its long-
term frequency bias for the 1 in./6 hr. threshold is about 1.1, 
compared to about 0.5 for the operational NAM model.  Thus, 
we have been exploring post-processing strategies that allow us 
to take advantage of the demonstrated skill in predicting the oc-
currence of heavy rain events, while providing meaningful 
quantitative expressions of the uncertainty in predicting the 
specific location where these events will occur.  

This work explores application of a simple post-processing al-
gorithm that introduces an estimate of spatial uncertainty in the 
prediction of heavy rainfall.  The algorithm uses a two-
dimensional Gaussian probability distribution function to 
define a regional “neighborhood” of non-zero probabilities for 
an event predicted by the model.  The resulting guidance prod-
ucts show good reliability and resolution in preliminary testing 
and calibration holds promise for even better predictive skill 
with this technique. The potential value of these forecasts as 
guidance for flash flood prediction will be discussed.

Figure 7. Reliability diagram for the probabilistic verification of the 1 in./6 hr. threshold. Perfect 
skill is denoted by the purple diagonal line. Above the line, the model underforecasted. Between the 
skill and no skill line, the model overforecasted. Below the no skill, dashed line there is no way to 
skillfully resolve the forecast. There is no distinction between the forecast and chance related to the 
climatology. 

Figure 8. Relative Operating Characteristic curve for the probabilistic verification of the 1 in./6 hr. 
threshold. The more area under the curve denotes higher skill. Note the areas listed. Legend is the 
same as Figure 7.

Figure 2. Graph showing HPC monthly 1” threat scores. 
Note the dips in scores during the warmer months, where 
we would ideally have the best scores. Source: David 
Novak, HPC.
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Figure 3. Graph showing 3-hour precipitation skill scores 
using the North America Model (NAM), for a two-year 
period ending April 2009. Note the scores at the 1” 
threshold and above. For the BIAS, coverage is less than 
one-to-one. For the GSS, the degree of overlap is very 
small. Source: Craig Schwartz.

2. Background
Model Information
National Severe Storms Laboratory (NSSL) and En-
vironmental Modeling Center (EMC) models
--Experimental configurations of the Weather Research and 
Forecasting (WRF) model
--4-km grid spacing
--Primary convection-allowing models
--NSSL and EMC1: incorporated into SPC data stream since at 
least 2006 (WRF-ARW and WRF-NMM)
--EMC2: tested in real-time since June 2009 (WRF-NMM)

Quantitative precipitation estimations (QPEs)
--NCEP Stage IV 240 grid
--4.7-km grid for observations

All model data was interpolated to the Stage IV grid 
before being verified.

Storm Prediction Center (SPC) forecasters have been 
treating these models like operational models since 
2006, but the model forecasts have never been evalu-
ated systematically.

Figure 5. Graphs of the Gilbert Skill Score (GSS). The left side shows two thresholds (top: 
1.0mm, bottom: 25.0mm) by month. The right side shows a warm month (top: August) and cold 
month (bottom: February) with all thresholds. The 25.0mm (~1”) threshold is highlighted with 
the red line. Higher scores are ideal.

5. Conclusions
The NSSL-WRF and a new experimental 
version of the 4-km WRF-NMM (run by 
EMC) both appear to provide valuable 
guidance for the prediction of heavy rain-
fall.  

This experimental method for producing 
probabilistic information from determinis-
tic model solutions shows great promise, 
producing forecasts with very good reli-
ability and resolution. 

4. Probabilistic Verification
Procedure
First, we generated a probability field from the determinis-
tic forecasts. For this project, I chose the 1 in./6 hr. thresh-
old because it is commonly used for flash flood analysis. I 
applied a Gaussian smoother (Figure 6c) with a standard de-
viation of 30 grid points to binary (yes/no) fields in deter-
ministic forecasts. 

The result of this process is shown in an example of the 
Nashville, TN flooding event on May 1-2, 2010 (Figure 6). 
This is a comparison of the observed rainfall (Fig. 6a), the 
NSSL-WRF deterministic forecast (Fig. 6b), and the 
NSSL-WRF probabilistic forecast (Fig. 6d). There is a dis-
placement error between the Stage IV observed data and the 
NSSL-WRF deterministic forecast. The probabilistic fore-
cast smoothes out the single deterministic forecast and pro-
duces the probability field. From this probability field for 
this particular threshold of 1 in./6 hr., we created verifica-
tion statistics.

4. Probabilistic Verification (cont)
Measures of Reliability and Resolution

Reliability Diagram
--How well do the predicted probabilities of an event 
correspond to their observed frequencies?
--Ideal scores run along the “perfect reliability” line.

From Figure 7:
--All 3 model runs did a good job at staying near the 
diagonal at lower probabilities, but became less skillful 
at higher forecast probabilities.
--The NSSL-WRF model was the most consistent.

Relative Operating Characteristic (ROC) Curve
--What is the ability of the forecast to discriminate between 
events and non-events?
--POD vs POFD (False Alarm Rate)
--Area under the curve is commonly used as a measure 
of discrimination capability. The more area, the better 
the forecast.

From Figure 8:
--All 3 model runs had very high areas
under the curve, showing better forecast results.
--The NSSL-WRF model did slightly better than both of the 
EMC model runs.

Figure 6. Maps of the flooding event 
in Nashville, TN from May 1-2, 2010. 
a) Stage IV observational data. b) 
NSSL-WRF deterministic forecast. c) 
Gaussian snoothing applied to the de-
terministic forecast. d) NSSL-WRF 
probabilistic forecast of the 1 in./6 hr. 
threshold. Note the displacement error 
between the observed rainfall and de-
terministic forecast.
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