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Ⅴ P f f t i l l ithⅠ I t d ti Ⅴ. Performance of retrieval algorithmⅠ. Introduction . Performance of retrieval algorithm
Efficiency of penalty termJapan Meteorological Agency (JMA) has been operating meso-scale model (MSM) mainly to enhance the y p y

The pseudo observation of RH is defined uniquely without penalty term of spatial restriction in the retrieval
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disaster prevention weather information, especially the very-short-range precipitation forecast. The initial condition of The pseudo observation of RH is defined uniquely without penalty term of spatial restriction in the retrieval 

algorithm To add the penalty term provides an appropriate dependency of beam height and that represents
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MSM has been providing by 4DVAR data assimilation system (JNoVA; JMA non-hydrostatic model based variational data algorithm. To add the penalty term provides an appropriate dependency of beam height, and that represents 

difference of hydrometeors type This approach avoids a positive bias of solid phase in the retrieval Because itassimilation system (Honda et al. 2005)). In this work, we developed a radar reflectivity assimilation system to improve difference of hydrometeors type. This approach avoids a positive bias of solid phase in the retrieval. Because, it 
has been known the reflectivity of snow is overestimated in 1-moment BMP scheme (Eito and Aonashi 2009), andanalysis of water vapor in JNoVA. This reflectivity data assimilation is 1D+4DVAR which composed of a one-dimensional has been known the reflectivity of snow is overestimated in 1 moment BMP scheme (Eito and Aonashi 2009), and 
such bias is unsuitable for retrieval method. (1D) retrieval of relative humidity and the conventional 4DVAR system. An application of this 1D+4DVAR method is 
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 Addition of penalty term Independent of height

expected that the environment of hydrometeors prediction and the precipitation forecast improve significantly. 
 Addition of penalty term Independent of height

Ⅱ NWP d l d i t l d i 4000m 6000mⅡ. NWP model and experimental design 4000m 6000m

Operational Domain of MSM
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The environment of experiment is built into JNoVA and JMA-NHM (Saito et 

H
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al. 2006) which is a forecast model of MSM similar to operational system. For R
H

experiment of new approach, the reflectivity assimilation is added 1D retrieval to 
ti l 4DVAR I thi 1D t i l d b ti f l ti h idit i

RH(Ze) is uniquely defined
conventional 4DVAR. In this 1D retrieval, pseudo observation of relative humidity is 
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RH(Ze)  is uniquely defined.

estimated by observed reflectivity and radar simulator as observation operator. The 
estimated pseudo observation data are assimilated in FT=0 FT= 1 and FT= 2 as Ze(dBZ)estimated pseudo observation data are assimilated in FT=0, FT=-1 and FT=-2 as 
conventional observation data

Ze(dBZ)

A l i (JN VA )

conventional observation data. 
3000m 5000m

Analysis (JNoVA )
 D t i il ti i d 3 h Data assimilation window: 3 hours
 Outer (JMA NHM) Outer (JMA-NHM)

 Grid spacing : 5km R d i l tFi t R d b ti Snow Grid spacing : 5km
 Experimental domain (grid): 721X577X50

Radar simulatorFirst guess Radar observation Snow 
domination Experimental domain (grid): 721X577X50.

 Inner (NLM TLM/ADM)
domination

 Inner (NLM, TLM/ADM)
 Grid spacing : 15km Retrieval algorithm Rain 

d i ti Grid spacing : 15km
 Experimental domain (grid): 241X193X40.  Green (Supported DB) X:Radar simulator Ze Y:Guess RH

domination
 Experimental domain (grid): 241X193X40.

Forecast (JMA-NHM)
 Green (Supported DB),      X:Radar simulator Ze,     Y:Guess RH
 Red (Retrieved),                  X：Observation Ze ,          Y: Retrieval RHPseudo obs. RH Pseudo obs. RH Pseudo obs. RH( )

 Grid spacing: 5 km. Blue (Rejected),                   X：Observation Ze ,          Y: Retrieval RHQuality controlp g
 Experimental domain (grid): 721X577X50.

H about 4000m The pseudo observation is rejected whenabout 4000m

Q y
JNoVA

FT=0FT=-1FT=-2
 Boundary condition: an operational GSM.
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H about 4000m

reject Humidify

The pseudo observation is rejected when 
increasing Ze error (Obs.Ze–Sim.Ze) and

about 4000m

120min 60 i 0 i

FT 0FT 1FT 2

 Convective parameterization : K-F scheme
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reject Humidify increasing Ze error (Obs.Ze Sim.Ze) and 
decreasing RH error (Pseudo Obs RH – Guess.RH). 
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 Cloud microphysical process: 
3 i b lk i h i (BMP) h i –
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This QC prevents the unusual dry up and humidify Inner loop (15km) Forecast
JMA-NHM3-ice bulk microphysics process (BMP) scheme; rain, 

l d l d t 1 t BMP R
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in the analysis (Caumont et al. 2010). After this QC, Outer-NHM (5km)

JMA-NHM

snow ,graupel and cloud water are 1-moment BMP 
scheme and cloud ice is 2 moment BMP scheme bs

.R the error histogram of pseudo observation becomes Initial timeAssimilation window (3 hours)
scheme, and cloud ice is 2-moment BMP scheme.
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rejectDry up
convenient the Gaussian distribution for 4DVAR.
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do rejectDry up

The horizontal correlation and 

Ⅲ Observation operator (Radar simulator) Obs Ze Sim Ze

P
se Pseudo Obs.RH – Guess RH vertical correlation of the RH error in each 

ltit d t ti ti ll l l t d ThⅢ. Observation operator (Radar simulator) Obs.Ze - Sim.Ze altitude are statistically calculated. The 
di t f h i t l thi i t d

The radar simulator is an observation operator to generate the reflectivity from model output This radar simulator Horizontal Correlation Vertical Correlation
distance of horizontal thinning to regard as 
uncorrelated is found 60 km which aThe radar simulator is an observation operator to generate the reflectivity from model output. This radar simulator 

provides more accurate position of beam path and an equivalent reflectivity factor which is computed from the size-
uncorrelated is found 60 km which a 
multiple resolution of the inner modelprovides more accurate position of beam path, and an equivalent reflectivity factor which is computed from the size

distribution of precipitation particles on beam-path through the geometry of the pointing angle of the virtual antenna in the
multiple resolution of the inner model.

The pseudo observation data existsdistribution of precipitation particles on beam path through the geometry of the pointing angle of the virtual antenna in the 
MSM forecast field. The distribution of the particle is diagnosed by the BMP scheme similar to the forecast model. The cloud 

The pseudo observation data exists 
at a rate of one every 1000m in a columnS o ecast e d e d st but o o t e pa t c e s d ag osed by t e sc e e s a to t e o ecast ode e c oud

particle is disregarded in this simulator, because the diameter of the clouds is smaller more enough than the wavelength of 
at a rate of one every 1000m in a column. 
We assume that the correlation between thep g , g g

the C-band radar.
We assume that the correlation between the 
data in column is allowed to a certain 
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degree. However, to avoid overlapping data 

Measurement of virtual antenna: Gaussian function to represent main lobes. 
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is necessary. Thus the overlapping data is 

It is calculated by Gauss-Hermit quadrature but the shape of the horizontal beam and side lobe is neglected.
 Back scattering: Rayleigh approximation or T matrix

rejected based on the observational error 
 Back scattering: Rayleigh approximation or T-matrix.
 Effective hydrometeors: The rain water the snow and the graupel

that depends on the distance from the site.
 Effective hydrometeors: The rain water, the snow and the graupel.
 Attenuation: Only the contribution of the rain water Attenuation: Only the contribution of the rain water.

Ⅵ Impact of 1D+4DVARⅥ. Impact of 1D+4DVAR
B h b di

BMP scheme for radar simulator
Beam path bending Reflectivity Intercept parameter The analysis-forecast cycle experiment demonstrated the improvement of hydrometeors representation in initial 
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The beam path is calculated from 
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condition. For example, the following figures represent the simulated reflectivity, RH and observed reflectivity of Fukuoka 
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the earth curvature and the refractivity of 
),,( gsrX XXX NN 0

N
gsre ZZZZ  radar, and the gray color region in figure is beam blockage by topography. This first guess has displacement error of 

hydrometeors position however the displacement error is recovered on outer FT 0 after 1D+4DVAR
y

atmosphere. The refractivity is computed 
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 Slope parameter hydrometeors position, however the displacement error is recovered on outer FT=0 after 1D+4DVAR.
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Ⅳ. Retrieval algorithm
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Directly assimilating hydrometeors estimated from radar reflectivity is attended with some difficulties For F
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Directly assimilating hydrometeors estimated from radar reflectivity is attended with some difficulties. For 
example the dynamical balance of the hydrometeors and the momentum cannot be easily adjusted Furthermore it is e:

 F

example, the dynamical balance of the hydrometeors and the momentum cannot be easily adjusted. Furthermore, it is 
difficult to calculate individual hydrometeors from the radar reflectivity for the reason that the relation between the S
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RELATIVE HUMIDITY RELATIVE HUMIDITY

difficult to calculate individual hydrometeors from the radar reflectivity for the reason that the relation between the 
reflectivity and these hydrometeors is strongly nonlinear A 1D Bayesian inversion method is one of the methods to ar

 S

RELATIVE HUMIDITY RELATIVE HUMIDITYreflectivity and these hydrometeors is strongly nonlinear. A 1D Bayesian inversion method is one of the methods to 
circumvent these difficulties. ad

a

1D Bayesian inversion
circumvent these difficulties.

, 
R
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Threshold 10mmh 11D Bayesian inversion

T
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, Threshold 10mmh-1

This method doesn't estimate hydrometeors from reflectivity. It retrieves the RH of pseudo observation 
f th b d fl ti it d th i l t d fl ti it b d B i i i 0 

U

from the observed reflectivity and the simulated reflectivity based on Bayesian inversion.
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■ ‘a posterior’ probability conditional probability a priori probability 20

Probability of state x occurs, given observation y can be made for non-linear problem is;

te
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eVerification of precipitation forecast
 Following Olson(1996) and assuming xi database of atmospheric S

co

The MSM forecast experiment was performed using initial condition
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This database is  radar simulator that represents sufficiently well the true distribution of x. The as
 SThe MSM forecast experiment was performed using initial condition 

provided by 1D+4DVAR The verification period of this experiment is 7daysp y
Integral which the right-hand side of the estimate equation is replaced by summation over all state, B

iaprovided by 1D+4DVAR. The verification period of this experiment is 7days, 
20 July to 26 July 2009. The ETS and bias score of 1D+4DVAR(Test) show

contained in the database.
20 July to 26 July 2009. The ETS and bias score of 1D 4DVAR(Test) show 
the improvement of precipitation forecast than only JNoVA(Control) in very 

Where ys is simulated reflectivity by the radar simulator R is the error covariance matrix
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short-range forecast. Especially Control has the sudden drop of Where ys is simulated reflectivity by the radar simulator, R is the error covariance matrix. 

Supported DB : RH(Ze)

g p y p
precipitation frequency on FT=3 that is improved in Test. 

Supported DB : RH(Ze)

Radar volume scan.
Observation/Simulation create the data set Ⅶ SObservation/Simulation create the data set Ⅶ. Summaryy

 The new indirect assimilation of radar reflectivity 1D+4DVAR is developing in JMA This new system is The new indirect assimilation of radar reflectivity, 1D+4DVAR, is developing in JMA. This new system is 
composed of the radar simulator the 1D retrieval and JNoVAcomposed of the radar simulator, the 1D retrieval and JNoVA.
 The penalty term of the spatial restriction that controlled the contribution of the hydrometeors was introduced The penalty term of the spatial restriction that controlled the contribution of the hydrometeors was introduced 
into the optimization technique for the performance gain of the 1D retrieval algorithminto the optimization technique for the performance gain of the 1D retrieval algorithm.
 In the analysis forecast cycle experiment the 1D+4DVAR approach demonstrates the improvement of heavy

This supported database is radar simulator that 
 In the analysis-forecast cycle experiment, the 1D+4DVAR approach demonstrates the improvement of heavy 
rain forecast because the atmospheric environment in the initial condition for the hydrometeor is improved byx sy 0yRH of guess: Simulated Ze: Observed Ze:

pp
represents well the true distribution of x. 

rain forecast, because the atmospheric environment in the initial condition for the hydrometeor is improved by 
assimilation of pseudo observation RH

S b ti

assimilation of pseudo observation RH.

Super observation
The supported DB is updated in a usual radar volume scan. Ⅷ Reference
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