Numerical Experiments on Formation Processes of Thin Moist Layers in the Tropical Midtroposphere over eastern Pacific Shigenori Otsuka and Shigeo Yoden (Dept. of Geophysics, Kyoto Univ., Japan)

1. Introduction

Vertically thin layers

- Reported by radiosondes and airborne observations • Right panel: An example over the tropical eastern Pacific (Shiotani et al. 2002)
- Water vapor in the tropics
 - Important for convections and radiation
 - Limited in-situ observations over ocean
- Formation of thin layered structures
 - Study using minor constituents (e.g., Stoller et al. 1999)
- Case study by numerical experiments (Otsuka and Yoden 2005)

No statistical analysis on formation of the layers \rightarrow the purpose of this study

We focus on moist layers in this presentation.

4. Case 1 (26-29 Sep 1999)

Latitude-height cross sections of RH, winds, and the source terms

Green circles: center of the thin moist layers detected with the definition of Otsuka and Yoden (2009) with $\delta RH = 35\%$ and $\delta h = 2 km$.

Schematic image of the shear flow in this case.

structure

5. Case 2 (statistics in 2005-2006)

Vertical distribution • Each season

Consistent with each other This analysis method works Excess of source terms in the upper troposphere in boreal

- Threshold: -7x10⁻⁵ % m⁻² This value corresponds to a layer with the RH difference of 35% and the thickness of 2

Sum of 4 source terms - Threshold: -5x10⁻⁹ % m⁻² s⁻¹

- Gravity waves?

Frequency of extreme values of source terms

- Threshold:
- -5x10⁻⁹ % m⁻² s⁻¹
- Vertical distribution
- Each season

 Compression term contains wavy motions.

 Vertical-advection term and radiation term (S_{θ}) are not dominant.

16 20 24 28 32 36 (×.001 km⁻¹)

Histogram of cloud-top height

Probability density

The peak of S_1 , S_3 at 5 km corresponds to the peak of the cloud-top height, whereas other two peaks of S_1 , S_3 correspond to the top and the bottom of the cloudy levels in the upper troposphere.

Contoured frequency by altitude of relative humidity

Three local maxima of the source terms correspond to the transition altitudes from the dry levels to the moist levels.

3. Model description

- NCAR/PSU MM5 Version 3.6.2 • 2-way nesting
- NCEP Final Analyses $(1^{\circ} \times 1^{\circ})$
- from surface to 10 hPa

- Calculation period: 3.5 days 26 Sep 1999 00Z – 29 Sep 1999 12Z See Otsuka and Yoden (2005)
- Calculation period: 2 years 1 Jan 2005 – 31 Dec 2006 3-day integrations with one day overlapping to discard initial one day
- See Otsuka and Yoden (2009)

		Domain1	Domain2
	Horizontal grid (dx)	63 km	21 km
	Num of grid	40×120	73×211
	Cumulus scheme	Anthes-Kuo	Grell
	Time interval (dt)	60 s	20 s

Latitude-height cross sections of the frequency of $S_1 < -5 \times 10^{-9}$ % $m^{-2} s^{-1}$ minus the frequency of $S_3 < -5 \times 10^{-9} \% m^{-2} s^{-1}$. Dependency on latitude is small. Contours show the occurrence ratio of the thin moist layers detected with $\delta RH > 35\%$ and $\delta h < 2$ km.

6. Summary

- Diagnosis on formation of thin moist layers
- Formation of the layers by advection is
- classified to four types
- Formation of new layers: Intrusion and Linear-shear
- Enhancement and maintainance: compression
- Application to the numerical experiments over equatorial eastern Pacific
- Intrusion: dominant at 5 and 15 km in altitude
- Linear-shear: dominant at 5 and 9.5 km in altitude
- Detrainment from cumulus convections and the distribution of water vapor may be responsible.
- **References:**
- Otsuka and Yoden, 2005: SOLA, **1**, 69-72.
- Otsuka and Yoden, 2009: J. Climate, **22**, 5102–5114.