ABSTRACT Initial model evaluation

Calibrations, stream flow and further testing

Approximately 60 — 80 % of precipitation is returned to the atmosphere =77 71 ULM was evaluated at for a set of river basins that span a range of hydroclimatic regimes (Figure 2). Initial Preliminary results are for model simulations using apriori parameters
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heterogeneity in land cover. Furthermore, in situ ET measurements can MR NN 2 g _ while parameter tunings were necessary to achieve improvements over all study basins, the majority of which timing and magnitude of peak ULM runoff is notably different from the
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