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1. Abstract 3. Construct Common-Refinement Mesh 4. Implementation
« The two-way coupling of WRF and CAM for regional Definition: A common refinement of two meshes Is a mesh composed of 1. We compute the intersection between source mesh and target
climate modeling requires transferring data (such as elements that subdivide the elements of both input meshes simultaneously, or, mesh based on common refinement data structure.
wind velocities, temperature, moisture, etc.) between the simply put, the intersections of the elements of the input meshes. 2. For every sub-element T (which is a triangle) of common-
grids of WRF and CAM. These grids are in general non- N . refinement mesh, we compute L‘”ﬁ‘/ﬁds and Lwi%ds for mass

matrix and load vector, respectfully.

« & and ¥i are shape functions of parent source element and
target element, respectfully.

* Integrals are computed by using quadrature rule In tS.
Currently we use 6 points quadrature rule.

3. By summarizing and organizing the integrals we get in the
second step, we get linear system (4), and it can be solved by
multiple numerical methods.
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Map projectio Find a pair of seed

matching, and the data transfer should be both physical
conservative and numerically accurate.
« QOur method contains two parts: the common refinement
and the L-2 minimization, which are shown as follows:
1. The former computes the grid intersections and provides
the necessary data structures for the latter. We project
the grids of WRF and CAM onto a plain surface using
their corresponding map projection methods. Then
common refinement method will locate the edge  rigyre 1: the left sphere shows two input meshes
intersection points of two grids, and determine sub-  (blue and green), and the right sphere shows the
facets to create a new mesh based on the union of the  common refinement mesh that triangulates the

O nodes on fine mesh

intersection points and vertices of the original two grids  'ntersection celis. T p——

within the overlapping area. e | 5 g

2. After obtaining the common refinement mesh, we use a Figure 2: Common-refinement mesh for highlighted overlapped area bv?;?;estsl:?ce;z\é?é%ceeﬁt % i
weighted-residual formulation, which minimizes the L-2 | g sdge E &
norm of the error, to complete the data transfer. The L-2 *Construct the common-refine mesh:  Face-face E interspetion 5 5
minimization method satisfies physical conservation and | intersection | Triangularize the 3 2

at the same time is as accurate as interpolation. 1. Map projection: Using the same map projection method as WRF’s to transform '”terSECIO”area -
CAM's grid from spherical coordinate to Cartesian coordinate, because In general Compute Mass Matrix and Load

Vector within every small triangle

CAM's grid are regular latitude-longitude grid using spherical coordinate, while WRF's
grld are reCtangLﬂar meSh in CartESian C()()rdinate_ T |

2 L 2 M | N | M | Zatl on AI g Or | i h m Figure 5: Summary diagram of the implementation

2. Face-to-face intersection: loop through CAM's grid and WRF's grid simultaneously to - -
compute intersection for every pair of source element and target element. S. Advantag es of C-R based AlgO”th M

eThis method is to minimize |1 2 norm of error over whole domain: : -
a) Define a pair of seed element.
Ez\/j'g(g—f)zdx | (1) ) P

eStrict physical conservation IS

where f Is the source function and g is the target function. b) Locate point projection: find local natural T turallv inh t f L2 minimizati
coordinate of target element's vertices within é%@%7 g%@@? ; f‘:c‘gjrg’c'”_ e;eigceror:ha em'?l;r:ézt% I'%”' o
*Then E Is minimized If source  element.  For  triangle,  natural %%ﬁ %ﬁg : source elye.ments and i)arget elements
o] (- f)axlag =0 , for i=1-+,n (2) coordinate Is just the barycentric coordinate. T asiy : o+ ded  the d ¢ e
Using fini ° - S 3 For rectangle, natural coordinate s i SR | o Provided me cediees O e
Using finite element shape functions, we have f=24fand g=>vg , ! gle, _ o guadrature rule are sufficiently high, the | | |
where 4 and v are shape functions at source control points "~ parameterized along two cell sides. - entries of mass matrix and load vector '9ure 6: 1-d illustration for
and target control points, respectfully. c) With the natural coordinate of vertices of both Figure 3: The left graphic are two original input .~ | 4 exactly computed over sub- L2 minimization method
From equation (2), we can get: source element and target element, we can ?nrt'gfs’eg;% n”ght graphic shows the face-toface " \Wih common-refinement
o[ (g-f)ax o 7wy dx 8] 37 wig;fdx o flox locate a pair of edges that might have | discretization, L2 minimization method is
SR 50 2 50 T intersections and calculate edge-to-edge at least as accurate as interpolation.
=22nlj 0, — 2y 0 | Intersection. _-que efficiency: our method IS opti_rnal
o VIV TV , 1=L--,n (3) in time and space, with linear complexity.
*Equations (3) are actually al x N linear system Mx=b : 3. Organize and triangularize the intersection area we get from step 2 to construct Figure 7: Convergent rate

common-refinement mesh.

6 . SU mm ary of error is 2" order

_:leds .:lel/fzds .:lewnds 0, .:le(zzlmi)ds
.Q‘//z%dS .Q‘//z%dS .Q%l//nds 19 .Q‘//z(zi:ﬁufi)ds - - — -

(4) ' : 1. The whole algorithm has been implemented.

jQV/nl/fldS Lwnl//zds jQWandS | On_ Lwn(ZLqﬁ.fi)dS é%@7 : 2. Physical convergence, accuracy and code efficiency have been
In the above linear system, M is the consistent mass matrix , | verified using multiple cubic fun(_:tlons. With bilinear shape functions,
and b is load vector. And t’his data transfer method will be | ' the convergent rate of eror is 2™ order. And higher order of
eferred to L2 minirﬁization : accuracy can be achieved with higher order shape functions.

In order to solve linear system (4), key question is how to integrate w%@ | : 3. The method Is b_elng integrated into .WRF/CAM coupling system.

the entries of mass matrix and load vector. In our method, we | | 4. Next step, we will test the method with real case.
construct common-refinement mesh, so that | ¥i¥;dsand | wi(2 4 f)ds : |
are discretized to every sub-element of common-refinement mesh. C Acknowledgement: This research is supported by DOE BER’s

Figure 4: Same as figure 3 but with illustration of triangularization .
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