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Bias Correction

•Soil moisture observations and models have distributions that differ significantly in both 
mean and variance.  Biases in land surface modeling are often on the order of the dynamic 
range of the measurement signal (Reichle and Koster 2004).
•In assimilating AMSR-E soil moisture estimates, we have observed dry biases and a small 
dynamic range in the observations (Blankenship et al. 2010).  
•It is prudent to scale the observed distribution of soil moisture to match the model 
climatology, thereby converting the satellite observations into model-equivalent values 
(Eyre 1992). Bias Correction methods are used routinely in operations at many NWP centers 
to correct temperature and moisture sounding satellite radiances (Auligne et al. 2007).
•Bias Correction:

•is distinct from the forward operator, which converts the background field into 
appropriate units.
•removes systematic error in either the observations or the model.

We assimilate AMSR-E soil moisture observations using an Ensemble Kalman Filter 
(EnKF) within LIS.   Kalman filtering is a data assimilation method that combines a 
forecast (background) with observations to generate an improved estimate of a model 
variable.  A Kalman Filter calculates an optimal weighting between the background and 
the observation.  The EnKF uses the spread of the ensemble to represent the forecast 
error covariance. We used an ensemble with 8 members generated using perturbations 
of 3 forcing variables (incident longwave and shortwave radiation, and rainfall), 14 state 
variables (14 layers of soil moisture), and 1 observation variable (AMSR-E soil 
moisture).

Bias correction based on regime-dependent cumulative distribution functions
for soil moisture data assimilation in a land surface model

Clay B. Blankenship and William L. Crosson
Universities Space Research Association, NASA-MSFC, Huntsville, ALOverview

•Objective: Improve the bias correction in a soil moisture data assimilation scheme used 
in a land surface model, based on the vegetation/land use type.  

•The existing bias correction uses a Cumulative Distribution Function (CDF)-matching 
technique to adjust a remotely-sensed soil moisture estimate (‘observation’) to a model 
(‘background’) value with the same frequency of occurrence.
•New method:  perform separate CDF adjustments for each land use type 

•Ultimate goal: to improve simulations of soil moisture/temperature, and consequently 
boundary layer states and processes.

SHEELS – Simulator for Hydrology and Energy Exchange at 
the Land Surface
• Distributed land surface hydrology model
• Heritage: 1980’s Biosphere-Atmosphere Transfer Scheme (BATS)
• Can run off-line or coupled with meteorological model
• Flexible vertical layer configuration designed to facilitate microwave data assimilation
• Contains radiative transfer model for microwave applications
• Described in Martinez et al. (2001), Crosson et al. (2002)
• Introduced as a new land surface model option in LIS (2010)

Land Information Sysem (LIS) -- SHEELS Integration

U.S. Great Plains 
Model Domain

Land cover classes used in 
SHEELS land surface model.

Circles mark points used in time-
depth cross sections, a rectangle 
marks the location of the Little 
Washita Micronet.

We have integrated SHEELS into the Land Information System (Kumar et al., 2006), a 
software framework for running land surface models.  

Software and Data
•LIS 5.0
•North American Land Data Assimilation System (NLDAS) forcing data
•Stage IV supplemental forcing (precipitation)

Features of LIS
•Highly customizable at run-time, facilitating modeling experiments & inter-comparisons
•Modular structure allows user to specify:
! Land Surface Model
! Base forcing (meteorological fields)
! Supplemental forcing (e.g. precipitation)
! Parameters including land cover, soil type, greenness fraction, topography
•Domains of input variables may be independent.
•Allows several tiles per grid cell to represent subgrid variability of soil type.
•Can run coupled with the WRF meteorological model.
•Includes capability to run data assimilation via Ensemble Kalman Filter.

AMSR-E Soil Moisture

"Conically scanning passive microwave radiometer
"Measures brightness temperatures at 6 frequencies from 6.9 to 89.0 GHz
"Horizontally and vertically polarized radiation are measured separately at each 
frequency
"Altitude of 705 km yields a swath 1445 km wide 
"AMSR-E/Aqua global surface soil moisture is generated from level 2A AMSR-E 
brightness temperatures spatially resampled to a nominal 25-km equal area earth grid.
"Due to extensive radio frequency interference in the 6.9 GHZ channel, 10.7 and 18.7 GHz 
observations are used for soil moisture estimation. 

Future Research
•Quantify impact of Land Use CDF correction vis-à-vis Uniform CDF correction over a multi-year time 
period by validating anomaly correlations against in situ measurements at sites including Little 
Washita Micronet in Oklahoma.
•Combine similar land use types (e.g. all forest classes) based on CDFs and physical properties.
•Apply similar methodology to test separate CDF corrections for day and night AMSR-E overpasses.
•Evaluate impact of new bias correction methodology on forecasting boundary layer states 
(temperature, humidity, wind) and surface fluxes.
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Ensemble Kalman Filter Data Assimilation
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SHEELS Sample Output

CDF Matching

Approach - Use LIS capability to conduct CDF matching (Kumar et al. 2009).  
• Observations are converted into equivalent model value occurring with the same frequency
• CDF Matching techniques are used by Reichle and Koster (2004) and Reichle et al. (2007)

Experiment Design – 3 Simulations
1. No Data Assimilation 
2. Uniform CDF simulation: Compute and apply single CDF correction for all points
3. Land Use CDF simulations:  Compute and apply CDF corrections independently for each 

land-use type 

48

CDF-based corrections applied in Uniform and Land use-dependent simulations.  
Soil moisture units are cm3/cm3.

Upper layer fractional soil moisture at 8 UTC on June 7, 2003.

Impact of Land Use CDF Correction
Difference in fractional soil moisture immediately 
following assimilation of AMSR-E data at 8 UTC 
on June 7, 2003: Land Use CDF minus Uniform 
CDF simulation.   The spatial pattern reflects the 
land use type distribution and illustrates the 
impact of the Land Use CDF correction on soil 
moisture data assimilation.  

Impact of data assimilation
The top left panel (no DA) indicates a wide 
range of soil moisture resulting from highly 
variable antecedent precipitation.  
Assimilation of AMSR-E data over the eastern 
half of the domain results in significant 
drying (Uniform CDF simulation shown; Land 
Use CDF simulation is similar.).   Panel to 
right shows the 1-hr (7-8 UTC) soil moisture 
increment that is largely due to DA, but also  
includes minor changes due to physical 
processes. 
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Soil moisture and temperature time-depth cross sections for grid cells in 
Texas and Nebraska for Jan.-July 2003. General moistening of the soil is 
seen in the spring associated with several heavy rain events.  Precipitation 
in Nebraska in winter does not penetrate deeply due to frozen soil.   
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