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1. Introduction

A uniform increase in stratospheric water vapor (SWV) causes stratospheric cooling
which is largest in the lower stratosphere, decreases with increasing height and is

5. How does the background concentration of SWV
affect the structure of the cooling?

enhanced in the extra-tropics by a factor of two compared to the tropics [1]. The
cooling has a different structure to that from an increase in CO,, which shows cooling
that increases with height and is maximum at the stratopause [2]. The cooling that
results from such a change in SWV, in particular the enhancement of cooling in the
extra-tropics, may influence the stratospheric circulation [3].

The magnitude and structure of AQ is dependent on the opacity of the overlying water
column since cooling-to-space is the dominant contribution to the long-wave heating rate
in the stratosphere. To demonstrate the impact of a change in the H,O column opacity on
AQ and AT, the same uniform 0.7 ppmv SWV increase was applied to different background
SWV concentrations varying from 3 to 100 ppmv.
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Figure 3: Vertical profiles at 70N of (a) AQ (K day') and (b)
AT (K) for a uniform 0.7 ppmv SWV perturbation applied to
different uniform background SWV concentrations.

3. Uniform 3 to 3.7ppmv SWV control experiment

Figure 1: Annual-mean calculations of (a) AQ (K day') and (b) the FDH AT (K) for a uniform increase

in SWV from 3 to 3.7 ppmv.
* There is a cooling tendency everywhere

(@) 6. Why is the cooling enhanced in the extra-tropics?
| exceptin the lowermost stratosphere.

ol T The magnitude of AT is a factor of two larger in the extra-tropics. The height of the

* The magnitude of AQ is largest at tropopause is lower in the extra-tropics; this could affect the radiative balance of the
the stratopause and decreases by a factor stratosphere and thus impact AT. The control experiment is repeated, but with stratospheric
of four between the upper and lower temperatures adjusted to the same height as the tropical tropopause at all latitudes. The
stratosphere. SWV perturbation is the same as in the control experiment; AQ is identical to Figure 1(a).
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Figure 4: Annual-mean FDH AT (K) for a uniform 3
to 3.7ppmv SWV change with stratospheric
temperatures adjusted only to the level of the
tropical tropopause at all latitudes.

4. How do different gases contribute to the cooling?

The initial AQ comes from changes in absorption and emission by H,O. However, the
response to equilibrate the heating rate perturbation comes from several gases acting
together. To understand the contribution different gases make to the cooling, the 3 to 3.7
ppmv SWV experiment is repeated for atmospheres containing different combinations of
uniformly mixed gases.
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7. Take home points

A uniform increase in SWV causes stratospheric cooling which is largest in the lower
stratosphere, decreases with increasing height and is a factor of two larger in the extra-
tropics.
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e When only CO, and H,O are
present, AT looks similar to the
control experimentin Figure 1(b).
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' The dominant gas which drives the cooling response in the mid and upper stratosphere is
CO,. In the lower stratosphere, ozone and water vapor have a more important role
because the CO, bands are highly opaque at these levels.
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o In this case the cooling is small in
the upper stratosphere, where CO,
can readily cool to space, and larger
in the lower stratosphere, where
the overlying opacity for CO, is high.

The low concentration of SWV is critical for determining that the cooling from a SWV
perturbation is largest in the lower stratosphere. At higher background SWV
concentrations, the water vapour bands become more opaque and the structure of the
heating rate perturbation and cooling resemble those from an increase in CO..
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The latitudinal gradient in the height of the tropopause is responsible for the lobed
structure of the cooling that results from a uniform SWV perturbation.

e When only ozone + H,O are
present, AT is largest in the mid
stratosphere at ~10 hPa.
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« When only H,O is present, the
cooling is largest at the stratopause.
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Figure 2: Annual-mean calculations for atmospheres
containing from left to right: CO, + H,0, ozone + H,O
and H,O only. Top: Background long-wave heating rate
Q (K day™"). Middle: Instantaneous change in heating
rate AQ (K day™") for a uniform 3 to 3.7 ppmv change in

SWV. Bottom: FDH temperature change AT (K).

2National Centre for Atmospheric Science (Climate), University of Reading, UK.

o For an atmosphere containing only
H,O, the structure of AT s
dominated by the structure of AQ.
This is because unlike CO, the ability
of H,O to offset a heating rate
perturbation does not vary greatly in
different parts of the stratosphere.
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