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Introduction

= Smoke transport and dispersion from wild fires is a critical health and
safety Issue.

= Grid resolution of current smoke dispersion modeling systems (e.g.,
Bluesky) hinders modeling of smoke dispersion at local scale and over
areas of complex terrain.

* |In this study, we simulate the transport and dispersion of smoke from
the Oct. 2007 wildfire outbreak in Southern California using a coupled
atmosphere/particle dispersion modeling system.

» The objectives of this study are:

. to evaluate the performance of the coupled Weather Research

and Forecast (WRF) model —Lagrangian Particle Dispersion
model (FLEXPART) to simulate smoke dispersion over
complex terrain,

. to examine the pathways by which smoke Is transported under

different synoptic conditions,

. to understand the role of thermally driven flows and boundary
layer structure in smoke transport and dispersion.

Model Configuration

WRF- simulate meteorology fields

*Three nested domains at 36,12,4 km grid
spacing and 49 vertical levels.
eSimulation period: 15-30 Oct. 2007.
|nitialization: NARR data.

Observational Data

»Surface meteorological

stations (pink circles) and

upper air stations (black
triangles) in the study

domain

425N |

400N

37.5N

350N

325N

Pacific Ocean

A Upper Air Stations
@ Surface Stations
300N
125.0 W 122.5W 120.0 W 1175 W 115.0 W 1125 W

»Total Ozone Mapping Spectrometer (TOMS) derived aerosol index

=Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation

(CALIPSO)

Validation of simulated meteorological fields
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Simulated and observed
hourly temperature (°C) (left),

mixing ratio (g kg?) (center),
and wind speed (m s1) (right)
at all surface meteorological
stations for the entire

Upper-level meteorological fields
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*Physical parameterizations: MYJ PBL, ] E [T
NOAH LSM, RRTM radiation, Lin ;g I RN
microphysics, Kain-Fritsch cumulus. N || =

Wind speed and direction, = Vaﬂgi?]téon
temperature, moisture, and turbulence Observation Oaklandi;
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/FLEXPART - simulate smoke particle\
concentration

*Passive tracer particles released at different
times from multiple fire locations to mimic the
spatially and temporally varying emission
rates of particles from the October 2007
Southern California wildfires.
e The particles then tracked in space and
time and concentration fields derived by
Qunting particle numbers for given areas.
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deviation of the differences
between simulated and
observed vertical profiles of
(a) temperature, (b) specific
humidity, (c) wind speed,
and (d) wind direction at
three upper-air locations:
Oakland (left), San Diego
(middle) and Mercury

(right).
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Ime-height cross section of the observed and simulated potential temperature (°C) (left

panel),specific humidity (gkg?) (middle panel) and vector winds (right panel).
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Horizontal distribution
of smoke plumes

TOMS aerosol index (left) and
FLEXPART CO tracer fields
(right). Red contour lines are

the geopotential heights (in
10 m interval) at 700 hPa
(left) and 850 hPa (right).
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Aerosol distribution (yellow
color) from the CALIPSO vertical
feature mask data (left column)
and the corresponding vertical
cross section of simulated CO
concentration (right column) for
different ground tracks.

The influence of
releasing time
and height on
smoke transport

- Simulated smoke trajectories

« The WRF model captured the flow patterns and boundary layer development over areas of
complex terrain in Southern California. There was a warm and dry bias at coastal and valley
locations and a cold and wet bias at mountainous sites, but the bias values were small (< 0.5
°C and 1 g kg™?). The simulated surface winds were generally lower than the observed (<0.5 m
s1).The simulation adequately captured the vertical structure of temperature, moisture, and
wind, and the simulated mixed layer heights were also in good agreement with the observed.

 The coupled WRF-FLEXPART dispersion modeling system was capable of simulating the

observed spatial distributions of smoke plumes from wildfires.

 The results highlight the important role of the region’s complex topography in the
determination of the smoke transport patterns and the need to accurately represent
Information such as plume rise in simulations of smoke transport and dispersion.
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