The Utilization of NASA Satellite Data to Analyze Tropical Cyclone Wind Speed and Cloud Height in the Gulf of Mexico to Assist CHILI in Hurricane Landfall Research

Alyson Cederholm, Ariel Johnston, David Mullek, Josh Stodghill, Raymond White
NASA DEVELOP Program, Mobile County Health Department

ABSTRACT

As tropical cyclones make landfall, most of the immediate structural damage is caused by strong winds. Instruments such as anemometers, thermometers, and barometers on buoys in the Gulf of Mexico provide real-time data as a storm approaches land. Unfortunately, these instruments occasionally fail in extreme weather conditions such as high wind velocities. In hurricane research, satellite data can be utilized alongside this data. Several satellite instruments monitor wind speed and direction. This project utilized the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) aboard the NASA Aqua satellite and the SeaWinds instrument aboard the NASA QuikSCAT satellite to monitor wind speed and direction of select storms that tracked through the Gulf of Mexico between 2002 and 2009. Ancillary wind speed data was retrieved from the National Data Buoy Center (NDBC). Satellite and buoy data were compared to assess strengths and limitations of each data type. Cloud height data in six storms from 2006 to 2009 was obtained from the Cloud Profiling Radar (CPR) instrument aboard the NASA CloudSAT satellite. Correlation between cloud heights and wind speed was assessed. A methodology for satellite data acquisition, processing, and analysis was produced and can be distributed to the Center for Hurricane Intensity and Landfall Investigation (CHILI) in future research. Wind vector maps and cloud height imagery were produced. Visualizations were also formatted for HIVE (Highly-portable Immersive Virtual Environment) viewing.

CONCLUSIONS

• QuikSCAT provides more accurate wind speed data than Aqua’s AMSR-E sensor. On average, QuikSCAT deviates from the buoy data by 2.80% and AMSR-E deviates by more than 100%.
• AMSR-E is useful when reporting wind speed data outside of tropical cyclone conditions. Under this condition, AMSR-E deviates from the buoy data by 12.46% on average.
• Strongest wind speeds correspond to the highest cloud top heights.
• A follow up mission to the QuikSCAT satellite is recommended.

TEAM MEMBERS

Alyson Cederholm – University of South Alabama
Ariel Johnston – University of South Alabama
David Mullek – Spring Hill College
Josh Stodghill – University of Mobile
Raymond White – University of South Alabama

ACKNOWLEDGMENTS

Dr. Sytske Kimball
Director, Center for Hurricane Intensity and Landfall Investigation (CHILI)

Dr. Bernard H. Eichold II
Health Officer, Mobile County Health Department

Karen Jordan
Instructor, University of South Alabama

Lucas Lee
DEVELOP Team Member, Stennis Space Center

NATIONAL APPLICATION AREAS

Natural Disasters

Weather

RESULTS

When applicable, CloudSAT tracks were overlaid onto their respective AMSR-E wind speed distribution maps. Using the “Extract Values to Point” function, interpolated wind speed values were extracted along the CloudSAT track. This allowed for further analysis of the wind speed data and cloud top height data.

The line graphs compare AMSR-E and QuikSCAT wind speed data to the #42001 and #5SMKF1 buoy wind speed data in Hurricane Rita. The scatter plots account for all AMSR-E and QuikSCAT data collected and compares it with the associated buoy readings. R² values indicate that QuikSCAT is a better indicator of wind speed than the AMSR-E sensor.

The map shows a CloudSAT track overlaid on top of its associated AMSR-E wind speed interpolation. The top graph displays wind speed and cloud height for the length of Hurricane Ida. The bottom graph displays a subset of the first graph.