Training for GOES-R Directed Towards Forecasters

B. Connell¹, D. Bikos¹, J. Braun¹, S. Bachmeier², S. Lindstrom², T. Mostek³, M. DeMaria⁴, and T. J. Schmit⁵

GOES-R is expected to be launched in late 2015. Why train now?

For a number of reasons - the first one being experience particularly with the GOES 8 and later satellites. We don’t want to start training after the satellite has been launched and we want our display systems capable of handling the new imagery and products. The second reason is that we can increase our awareness of GOES-R capabilities now by looking at other imagery and products.

How do we learn?

Hearing – prefers lecture, conversation, module with audio
Reading – prefers books, presentations with slides, module with text
Seeing – prefers video/module with graphics
Doing – prefers exercises, labs, on-the-job applications

Overcome: Resistance to learning non-relevant materials
1. Provide a context for the new information.
2. Organize and chunk information.
3. Provide simulations.
4. Develop various training materials to address various learning styles.
5. Transfer to workplace (via the Proving Ground)

Target Audience
Forecasters at NWS operational offices (National Center, Weather Forecast Office, River Forecast Center, and Central Weather Service Unit) and anyone else inside or outside NOAA who is interested.

Tools: VISITview, Articulate Presenter, Blog, Web Pages, Gotomeeting, Weather Event Simulator

Methods:
• Complete modules on GOES-R or Proving Ground Products - teletraining and recorded sessions
• Product examples embedded in topic modules
• Product Descriptions on web pages
• Blogs
• Simulations

Syncrse 101 90 minutes
By B. Connell, T. J. Schmit, J. Gurka, S. Goodman, D. Hilliger, and S. Hill

This session addresses "Why?, "When?," and "What Sensors?" will be on GOES-R and presents examples of what to expect. If a look is how we can start preparing for GOES-R now.

Module is included in the SHyMet for Forecaster Series

http://rammb.cira.colostate.edu/training/shymet/forecaster_intro.asp

Synthetic Imagery in Forecasting Orographic Cirrus 30 minutes
By D. Bikos

The sessions addresses: How to use synthetic imagery generated from model output to aid in identifying formation of orographic cirrus. Unpredicted orographic cirrus can dramatically alter the forecast for surface temperatures, day and night.

Available through VISIT as teletraining and in audio playback.

http://rammb.cira.colostate.edu/training/shymet/forecaster_modis_cirrus

The UW Convective Initiation Product
Developed by J. Sieglaff, L. Cronce, W. Feltz, K. Bedka, M. Pavlison, and A. Heidinger
Delivered by Scott Lindstrom 40 minutes

This session describes the University of Wisconsin Convective Initiation (UWCI) product, which tracks cloud top temperatures and cloud types to determine when a particular cloud pixel is growing in the vertical.

Available through VISIT as teletraining and in audio playback.

http://rammb.cira.colostate.edu/training/shymet/forecaster_modis_cirrus

MODIS Products in AWIPS
By S. Bachmeier

This teletraining describes the MODerate-resolution Imaging Spectroradiometer (MODIS) imagery and products. A variety of MODIS examples demonstrate the unique operational utility of these new satellite products, which will help forecaster prepare for new satellite channels and products coming in the JPSS and GOES-R era.

http://rammb.cira.colostate.edu/training/shymet/forecaster_modis_products_in_awips

Available through VISIT as teletraining and recorded sessions.

Embedded examples and complimentary sessions:

Volcanoes and Volcanic Ash Part 1
by J. Braun and J. Osienksy

Water Vapor Imagery Analysis for Severe Thunderstorm Forecasting
by D. Bikos and D. Lindsey

BLOGS:

CIRA
http://rammb.cira.colostate.edu/training/viis/blog/

CIMSS
http://cimss.ssec.wisc.edu/goes/blog/

Proving Ground Product List
http://cimss.ssec.wisc.edu/goes_r/proving/products_list.html

Soon to be released:
Teletraining/online modules:
Objective Satellite-Based Overshooting Top and Enhanced-V Anvil Thermal Couplet Signature Detection
30 minutes
By K. Bedka, J. Brunner, L. Cronce, R. Dvorak, W. Feltz, and S. Linstrom

Utilizing Synthetic Imagery from the NSSL 4-km WRF-ARW model in forecasting Severe Thunderstorms
60 minutes
By D. Bikos

Volcanoes and Volcanic Ash Part 2
by J. Braun and J. Osienksy

WES Case
WES Simulation Guide: Advanced Baseline Imagery
By K. Bah, J. Gerth, and T. J. Schmit


Acknowledgments
This work is supported by NOAA Grant NA090AR4320074. We are grateful to all contributors to the many information outlets. They would take an entire poster to list2.