Localized Effects of Wind Turbines on Weather Conditions
Kathryn A. Demchak, Brian M. Doogs, Meghan F. Henschen, Brittany N. Herrholtz, Joshua A. Holland, Erik D. Larson, John P. Martin, Lacey R. Rhudy, Matthew D. Rudkin, and Ki-Hong Min
Department of Earth and Atmospheric Sciences
Purdue University, West Lafayette, IN 47907-2051

MOTIVATION

• Minor research has been pursued in how wind turbine establishments affect local weather conditions
• Knowledge of how local wind farms affect weather around their vicinity is important to farmers in the area

Hypothesis:
• More turbulent rotation within the vicinity of turbines
• Mixing of air causes cooler day time temperatures and warmer night time temperatures
• Drier conditions downwind

BACKGROUND

Positive aspects of wind turbines:
• clean, efficient, abundant source of wind, wind is free
• Roy and Pacala (2004):
 • Nocturnal jet causes well mixed boundary
 • Early morning most prevalent
• Changes temperature, humidity, and latent heat flux
• Frandsen and Emeis (1993):
 • States “momentum loss is due to an infinite cluster of obstacles, [in other words] wind turbines.”
• Roy and Traiteur (2003):
 • Turbines change local weather by changing air flow patterns
 • Near-surface air temperatures downwind of the wind farm are higher than the upwind regions during night, and cooler during day
 • Nocturnal warming of the air helps protect crops from frosts

METHODS

Equipment:
• 4 WXT510s
• 1 MAWS101
• 3 evaporation containers
Parameters measured: temperature, pressure, wind speed, wind direction, relative humidity, rainfall amount

Timeframe:
• 29 Oct – 17 Nov 2010
 • 2 min intervals for 20 days
 • 29 Oct – 4 Nov: NE & SE sites
 • 4 Nov – 11 Nov: MAWS & NE sites
 • 11 Nov – 17 Nov: MAWS, SW, NW, NE sites

RESULTS

Weather during experiment:
• 29 October – 6 November
 • Cold front went through between 4-5 November, causing higher wind speeds, lower barometric pressure, and lowered the temperatures slightly. Accumulating rain occurred 5 November.
• 6-13 November
 • Dry cold front went through 8-9 November. On 13 November, the a cold front went through the area lowering pressure and temperature slightly. Wind speeds were between 5-10 mph. Little precipitation occurred with this front.
• 14-17 November
 • No precipitation during 16-17 November. There was a brief drop in surface pressure with winds at 10 mph. Temperatures stayed steady throughout this time period.

CONCLUSIONS and FUTURE WORK

Conclusions:
• Warmer temperatures occurred in localized areas downwind of turbines, especially late night/early morning
• Cooler temperatures were observed downwind of turbines during day time hours due to surface mixing caused by wind turbines
• Decrease in RH were found as winds progressed through wind farm
• As wind progressed through the wind turbines, higher evaporation rates occurred downwind

Future Work:
• Perform statistical analyses to delineate instrument error and biases
• Evaluation of soil moisture content of localized farm land
• Further experimentation to include cooler seasons to assess the decrease of frost down wind of wind turbines

References:

