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1. INTRODUCTION 

 
 Convective storms continue to pose a major 
challenge for aviation safety and economics, which 
could be mitigated through improved prediction.  
The Meteorological Development Laboratory 
(MDL) of the National Weather Service (NWS) is 
addressing the high demand for improved convec-
tion prediction by providing probabilistic thunder-
storm guidance forecasts with Model Output 
Statistics (MOS) applications for projections of     
12 hours and beyond (Hughes 2004) and with the 
Localized Aviation MOS Program (LAMP; Charba 
and Liang 2005a; Charba and Samplatsky 2009) 
for shorter projections.  An important aspect of 
these guidance forecasts is that a thunderstorm is 
defined solely on the basis of cloud-to-ground 
(CTG) lightning strikes as reported by the National 
Lightning Detection Network (NLDN; Cummins et 
al. 1998).   
 
 The definition of convection used in the Col-
laborative Convective Forecast Product (CCFP; 
http://aviationweather.gov/products/ccfp/docs/pdd-
ccfp.pdf), a key guidance tool used by the U.S. 
Federation Aviation Administration, is based on the 
radar reflectivity of precipitation.  Thus, the CTG-
lightning-based definition of thunderstorms used in 
MDL guidance products has limited applicability to 
aviation forecasting, as some convective storms 
(especially those associated with tropical systems) 
contain little or no CTG lightning (Charba and 
Samplatsky 2009).  This limitation is addressed in 
this study, as a new convection predictand is de-
fined from a combination of radar reflectivity and 
CTG lightning data.   
 
 In addition, an independent assessment of the 
usefulness of the currently operational LAMP light-

                                            
  *  Corresponding author address: 
Dr. Jerome P. Charba, National Weather Service 
1325 East West Highway, Room 10410 
Silver Spring, MD 20910-3283   
email:  jerome.charba@noaa.gov 

ning probabilities as aviation forecast guidance to 
supplement the CCFP (Mahoney et al. 2009) indi-
cated the lightning probabilities exhibited weak skill 
and sharpness during mid-summer months, par-
ticularly for the 1500 UTC LAMP cycle and forecast 
projections beyond about 6 hours.  This deficiency 
is also addressed here by upgrading the MOS 
forecast input into LAMP (Ghirardelli and Glahn 
2010), as two National Centers for Environmental 
Prediction (NCEP) operational models (rather than 
one in the current product; Charba and Liang 
2005a) are used.  Otherwise, the new convection 
model is similar to the current lightning model [an 
overview of the latter is provided by Charba and 
Samplatsky (2009), which is henceforth referenced 
as CS].          
 
 To date, the basic structure of the LAMP con-
vection model is mature, but some aspects are still 
evolving and a few components remain to be com-
pleted.  Thus, the model description, results, and 
findings presented here are somewhat preliminary 
and incomplete.     
 
2. CONVECTION PREDICTAND DEFINITION 
 
 Convection events over the forecast domain 
(Fig. 1) are defined from a combination of radar 
reflectivity measurements from the WSR-88D radar 
network (Fulton et al. 1998) and CTG lightning 
strike measurements from the NLDN.  The radar 
data are taken from radar coded messages (RCM; 
OFCM 1991), wherein reflectivities are coded with-
in 10-km gridboxes for a local sub-grid for each 
network radar site.  These sub-grids are compo-
sited to form national grids and the latter are qual-
ity controlled (Kitzmiller et al. 2002).  Lastly, 
supplemental quality control is applied to the na-
tional grids prior to use in LAMP (Charba and    
Liang 2005b).  
 
 A convection event is defined for a 20-km grid 
box during a 2-h valid period with two criteria for an 
occurrence: ≥ 40 dBZ radar reflectivity and/or one 
or more CTG lightning strikes.  A convection non-



Figure 1.  Forecast domain, which is comprised of 
thirteen overlapping geographical areas (region
numbers shown) used for regionalizing the
LAMP convection prediction model.  The region 
number is positioned within the non-overlap 
portion of a given region, and the color shade
changes where the region overlaps adjacent
regions.  

occurrence or occurrence (0 or 1 value) is speci-
fied for various combinations of these criteria as 
shown in Table 1.  Note that an entry is not shown 
where CTG lightning data are missing since ex-
tremely rare instances of observational gaps in the 
lightning data archive are removed from the sam-
ple beforehand (Charba and Liang 2005b).  Also, 
for the combination of missing reflectivity data and 
no CTG lightning, we chose to assign a 0 rather 
than missing to minimize sample shortening due to 
missing radar data.  This choice should be rea-
sonably safe since much of the missing radar data 
falls in the mountainous western U.S. (see Figs. 10 
and 11 of Charba and Liang 2005b) where warm 
season convection is highly electrified.  Finally, it is 
important to note that the LAMP lightning predic-
tand mentioned in the Introduction is identical to 
the convection predictand, except only the light-
ning criterion in Table 1 is used for the former. 
 
 
Table 1.  Convection predictand values for various combina-

tions of the radar reflectivity and CTG lightning criteria.    
  ≥ 40 dBZ reflect. ?      ≥ 1 CTG strikes ?        Predictand value        
          no                                no                                  0 
          missing                        no                                 0 
          missing                        yes                                 1                                
          no                                yes                                 1  
          yes                                no                                   1 
            yes                               yes                                   1 

 
 
 
 

3. GFS- AND NAM-BASED MOS CONVECTION 
PROBABILTY FORECASTS 

 
 In accordance with the LAMP framework (Ghi-
rardelli and Glahn 2010), most predictive input 
from an operational numerical weather prediction 
(NWP) model is in the form of MOS forecasts for 
the predictand.  Here the MOS input consists of 
convection probabilities for projections in the         
9- to 30-h range from the 0000, 0600, 1200, and 
1800 UTC model cycles.  For development of the 
MOS forecasts, archived output from two NCEP 
NWP models were available: the Global Forecast 
System (GFS; Kanamitsu et al. 1991) and the 
North American Mesoscale model (NAM; Rodgers 
et al. 2005).  The historical periods are April 2002 – 
October 2010 for the GFS and June 2006 – Octo-
ber 2010 for the NAM.   
 
 Because the lengths of the GFS and NAM ar-
chives were substantially different, separate con-
vection probability regression equations, based on 
the conventional MOS approach (Glahn and Lowry 
1972), were developed from the GFS and NAM 
model output.  Also, separate regression equations 
were developed where the data for the period Oc-
tober 2009 – October 2010 were withheld to test 
the performance of the convection probabilities.  
The MOS equations were stratified according to 
three “seasons” [16 October – 15 March (cool);   
16 March – June 30 (spring); 1 July – 15 October 
(summer)], and they were “geographically general-
ized”, where a single equation applies to the full 
CONUS domain (Hughes 2004).  The latter “na-
tional” approach is efficient computationally, and it 
avoids the problem of spatial inconsistency in the 
probabilities at regional boundaries (section 4). 
 
 Comparative verification of GFS- and of NAM-
based MOS convection probabilities from prelimi-
nary regression equations showed the GFS yielded 
only very slightly better (lower) Brier scores     
(Brier 1950) and reliability (Wilks 2006) than the 
NAM (not shown).  In this test, these GFS and 
NAM scores were averaged over the full archives 
of each model with cross-validation (Wilks 2006), 
where a full season of data was withheld for indi-
vidual scores involved in the average.  This result 
suggested the shorter NAM sample could be ade-
quate for developing follow-on “ensemble” MOS 
convection probability regression equations where 
the initial, single-model MOS convection probabili-
ties are the sole predictors.  Also, comparative in-
spection of probability maps for selected cases 
revealed the NAM-based probabilities had much 
higher spatial detail than the GFS probabilities.  
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This scale contrast suggested an interactive 
predictor (Charba and Samplatsky 2011a) 
computed from the two convection probabili-
ties could provide supplemental predictive 
information. 
 
 Several regression experiments with the 
GFS and NAM convection probabilities were 
conducted to investigate these ideas.  Specifi-
cally, the GFS and NAM probabilities were 
regressed as separate predictors to produce 
GFS+NAM MOS “ensemble” convection 
probability equations.  Also, an interactive 
predictor defined as the simple product of the 
GFS and NAM probabilities was used together 
with the initial GFS and NAM probabilities to 
develop three-predictor “super-ensemble” 
(SES) convection probability regression 
equations.  Otherwise, the derivation of the 
two types of ensemble equations was identical 
to the original GFS and NAM convection 
probability equations. 
 

Figure 2.  Brier skill score (BSS; %) versus forecast pro-
jection (h) from 1200 UTC for various MOS convec-
tion probability forecast models for the cool (top),
spring (center), and summer (bottom) season (see 
text for an explanation of the legend in the center 
panel). 

 To examine the comparative performance 
of the GFS-, NAM-, GFS+NAM, and SES-
based MOS convection probabilities, we com-
puted seasonal Brier skill scores (BSS; Wilks 
2006) using the October 2009 – October 2010 
independent sample (Fig. 2) where monthly 
relative frequencies of the convection predic-
tand (section 4) were used as the climatologi-
cal forecasts.  Several findings in Fig. 2 are 
relevant to this study.  (1) GFS-based skill is 
higher than NAM skill, except at short projec-
tions during spring and summer.  This result is 
consistent with the finding of slightly superior 
GFS performance in the initial comparative 
verification experiment (discussed above) 
where cross-validation scoring was used.     
(2) GFS+NAM skill is substantially better than 
GFS or NAM skill, which reflects the predictive 
enhancement of a combined-model MOS ap-
proach.  (3) SES skill is generally better than 
GFS+NAM skill (the few projections in Fig. 2 
where the SES and GFS+NAM skill is the 
same may arise from sample shortness).  This 
finding reflects the added predictive contribution of 
the GFS-NAM probability-product predictor.  
 
 Included in Fig. 2 are BSSs for separate SES 
convection probabilities, where these probabilities 
are geographically calibrated with regionalized re-
gression equations (SES-REG; see section 4).  
Note that BSSs for SES-REG probabilities are 
consistently higher than those for the (“national”) 
SES probabilities despite the relatively short de-

velopmental sample used [the samples used in the 
authors’ previous regionalized gridded statistical 
forecast applications (CS; Charba and Samplatsky 
2011b) were substantially longer].  Thus, the re-
gional approach was considered (and ultimately 
used) for development of the LAMP convection 
probability regression equations (next section). 
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4. LAMP CONVECTION PROBABILITY FORE-
CASTS 

 
4.1 Regression Equation Development 
  
 With the LAMP approach, short range     
(30 hours and less) MOS convection probability 
forecasts issued four times per day are updated 
hourly through use of various observations-based 
predictors.  The MOS updates come from LAMP 
convection probability regression equations, where 
the predictors consist of the GFS- and NAM-based 
convection probabilities, the GFS-NAM probability 
product, and various observations-based LAMP 
predictors.  The latter are essentially identical to 
those used to produce currently operational light-
ning probability forecasts (Charba and Liang 
2005a), except here the climatological monthly 
relative frequency of the convection predictand (an 
example of which is shown in Fig. 3) replaces a 
corresponding lightning climatology.  (The high 
spatial coherency of the July relative frequencies in 
Fig. 3 results from smoothing raw frequencies 
computed from 1997 – 2010 historical data.)  Also, 
radar-reflectivity-based variables have a stronger 
predictive role for the convection predictand than 
for the lightning predictand (not shown).  This re-
sults from an internal correlation of the radar pre-
dictors with the convection predictand, as radar 
reflectivity data are used to specify both variables.     

Figure 3.  July relative frequency (%) of the con-
vection predictand during 2200 – 0000 UTC. 

     

 As noted in the previous section, a geographi-
cally-regionalized approach was used for devel-
opment and application of the LAMP convection 
probability regression equations.  With this ap-
proach, the inevitable problem of inconsistency of 
the gridded convection probabilities across re-
gional boundaries (CS; Charba and Samplatsky 
2011b) required treatment.  Following the work of 
Charba and Samplatsky, the treatment involves 
use of overlapping geographical regions in the de-

velopment and application of the convection prob-
ability regression equations.  The overlapping 
regions shown in Fig. 1 were used for each of the 
three seasonal stratifications of the LAMP regres-
sion equations (the LAMP seasonal stratification is 
the same as for MOS).  It is noted that the overlap-
ping-regions method described in CS is an earlier 
version of the method used by Charba and Sam-
platsky (2011b).  This earlier version was not 
adopted here because it involves tedious tuning of 
complex smoothing procedures that are applied 
along the regional boundaries to mitigate regional 
discontinuities.  The preferred Charba and Sam-
platsky method avoids boundary discontinuities 
altogether even for regions with relatively small 
overlap, e. g., regions 10 and 13 in Fig. 1.  This is 
evident from the absence of regional discontinui-
ties in example probability maps in section 5. 

  

 
4.2 LAMP versus MOS Convection Probability 

Skill 
 
 Here, we examine the MOS updating perform-
ance of regionalized LAMP convection probabilities 
for the 1800 UTC LAMP cycle, whereby the GFS-
NAM probabilities being updated are from the   
1200 UTC cycle.  Included in the performance 
comparison are LAMP convection probabilities 
based on non-regionalized (national) regression 
equations.  Figure 4 shows seasonally-stratified 
BSSs for the regionalized (REG) and national 
(NAT) LAMP convection probabilities together with 
the MOS SES probabilities (discussed in section 3) 
for the same independent sample as for Fig. 2.  
Here we find REG skill is higher than SES skill at 
all LAMP projections to 24 hours for all three sea-
sons.  Also, REG skill improvement on SES is 
quite strong for LAMP forecast projections up to    
6 hours, which reflects the important predictive role 
of “extrapolated” observations-based radar and 
lightning variables (see Charba and Liang 2005a).  
Another important finding is that REG skill is con-
sistently higher than NAT skill.  Further, REG skill 
improvement on NAT is rather substantial during 
the cool season for all projections, which may be 
attributed to the strong geographical variation in 
convection during that time of the year.  Finally, 
NAT skill improvement on SES is marginal beyond 
8 to 12 hours, depending on the season.  This in-
dicates REG skill improvement on SES at the long 
projections is due mainly to the regionalization.  
Thus, all subsequent references to LAMP convec-
tion probabilities involve geographical regionaliza-
tion.  
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Figure 4.  Seasonal BSS versus forecast projec-
tion (h) from 1800 UTC for regionalized (REG)
and “national” (NAT; see text) LAMP convec-
tion probability forecasts.  Included are BSSs

Figure 5.  As in Fig. 4 for LAMP lightning and con-
vection probabilities (see text for explanation of 
the legend).  Note that BSSs for CNV-CNV and 
REG in Fig. 4 are identical. 

for SES MOS probabilities from Fig. 2 (add 6
hours to LAMP forecast projections). 

4.3 LAMP Convection Probability versus Light-
ning Probability Skill  

 
 Since an important goal of this study was to 
improve the skill and sharpness of the current 
LAMP lightning probabilities (see Introduction; CS), 
here we investigate whether this goal was 
achieved.  In Fig. 5, BSSs for LAMP lightning and 
convection probabilities are shown for the same 
cycle and sample as for Fig. 4.  Here, the BSSs for 
the lightning probabilities are computed two ways: 

for the method denoted LTG-LTG the lightning 
probabilities are verified against the lightning pre-
dictand and climatology; for the method denoted 
LTG-CNV the lightning probabilities are verified 
with the convection predictand and climatology.  
For the convection probabilities the BSSs are 
computed only with the convection predictand and  
climatology; these BSSs are denoted CNV-CNV.  
Note that while a quantitative comparison of the 
BSSs for LTG-LTG versus CNV-CNV is not strictly 
valid (since the predictands are not identical) the 
comparison should be meaningful as the predic-
tands are rather similar (section 3).  Also, compar-
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ing BSSs for LTG-CNV and CNV-CNV is valid, but 
it is unfair to score the lightning forecasts with the 
convection predictand.  Still, these scores are 
meaningful because the lightning probabilities are 
being considered as a guidance tool for aviation 
planning and operations (Mahoney et al. 2009).       
 
 From Fig. 5 we find the CNV-CNV BSSs are 
about twice the LTG-LTG BSSs over the three 
seasons and all forecast projections.  Also, the skill 
superiority of CNV-CNV is greater in the CNV-CNV 
versus LTG-CNV BSS comparison, which is ex-
pected for the reason given above.  Interestingly, 
the skill superiority of CNV-CNV is huge during the 
cool season; it is smaller during the summer.  
Since precipitation is generally more electrified 
during summer than during winter, this finding may 
reflect a larger disparity in the lightning and con-
vection predictands during the latter season.  An-
other important feature in Fig. 5 is that the drop-off 
in skill with increasing forecast projection is sub-
stantially less for CNV-CNV than for LTG-LTG.  
This finding likely reflects the greater predictive 
contribution of the combined GFS-NAM MOS input 
in the convection model compared to the smaller 
GFS-MOS-only input in the lightning model.  Note 
from Fig. 2 that the skill drop-off rate for the NWP 
models is rather gradual.     
 

Figure 6.  As in Fig. 5, except for the 1500 UTC 
cycle during the summer season and LTG-CN

 Mahoney et al. (2009) found that the LAMP 
1500 UTC lightning probabilities during July - Au-
gust 2009 were not useful as a supplement to the 
CCFP product (which is valid in the 2- to 6-h 
range); for longer ranges the utility of LAMP was 
no better.  Thus, the above lightning versus con-
vection BSS comparison is repeated for 1500 UTC 
during summer in Fig. 6.  Again we find that the 
BSSs for CNV-CNV are about double those for 
LTG-LTG.  Also, the skill drop-off with increasing 
projection is less for convection than for lightning, 
although not to the degree as for 1800 UTC     
(Fig. 5).  Thus, the convection probabilities should 
provide improved forecast guidance for the aviation 
applications.  Still, the summer season skill for both 
the convection and lightning probabilities at     
1500 UTC is lower than for 1800 UTC.  The skill 
degradation at 1500 UTC likely arises for two rea-
sons: (1) the LAMP radar and lightning predictors 
are less effective at 1500 UTC, as this time gener-
ally precedes the initiation of the climatic diurnal 
convective peak; (2) the MOS input may be weaker 
at 1500 UTC than at 1800 UTC because it has in-
creased latency (9 hours versus 6 hours, respec-
tively) and it is based on an “off-time” (0600 UTC) 
NWP cycle rather than an “on-time” (1200 UTC) 
NWP cycle. 

V 
is excluded. 

 

 A much greater contrast between the          
convection and lightning probabilities appears in 
the sharpness, as depicted in the probability distri-
bution plots in Fig. 7.  Note that the convection 
probabilities exhibit far better sharpness (many 
more cases of high probability values) than the 
lightning probabilities, especially at the long fore-
cast projections (22-h projection at 1800 UTC and 
21-h projection at 1500 UTC).  Finally, note that 
the sharpness for the convection probabilities is 
somewhat better at 1800 UTC than at 1500 UTC 
for both the short and long projection.  This is con-
sistent with the increased skill at the former cycle 
(Figs. 5 and 6, respectively). 

  The reliability and sharpness are additional 
properties of probability forecasts that relate to 
their utility (Wilks 2006).  These properties of the 
LAMP lightning and convection probabilities, for 
seasons, cycles, and forecast projections with con-
trasting skill, are shown in Fig. 7.  We find the reli-
ability for 1800 UTC convection probabilities during 
the cool season for a short projection [4-h, where 
the skill is relatively high (Fig. 5)] is generally good, 
as the forecast probability versus observed relative 
frequency curve hugs the perfect reliability line ex-
cept for peak probability values.  The reliability for 
this cycle and season is also good at the long   
(22-h) forecast projection.  For 1500 UTC during 
summer the reliability for both the convection and 
lightning probabilities appears somewhat poorer for 
the 4-h projection.   
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Figure 7.  Reliability and frequency distribution (inset) of the LAMP lightning and convection probabilities 
for the 1800 UTC cycle during the cool season (left) and 1500 UTC cycle during the summer season
(right).  The ordinate scale in the frequency distribution charts is logarithmic.  The legend is the same 
as in Figs. 5 and 6, and perfect reliability is indicated by the straight diagonal line in the reliability
chart.  The probability values plotted are means within 10 % probability intervals (5 % intervals near 0 
and 100 %); means for (upper) probability intervals with less than 100 cases not plotted. 

5. LAMP CONVECTION PROBABILITIES VER-
SUS LIGHTNING PROBABILITIES FOR SE-
LECTED CASES 

 
 In this section we briefly examine maps of 
LAMP convection versus lightning probabilities for 
selected cases of strong convection outbreaks.  
The cases were taken from the 2010 summer sea-
son, where the probabilities are “independent” for 
both the convection and lightning predictands.  For 
each case, convection and lightning probabilities 
are shown together with the verifying observations 
for each predictand.  The primary purpose is to see 

if forecast performance findings in the previous 
section are evident in individual forecasts. 
 
 Figure 8 shows 18-h convection and lightning 
probabilities from 1800 UTC 21 July 2010 along 
with the verifying observations.  We find that peak 
convection probabilities are far higher than peak 
lightning probabilities, especially for the intense 
maximum in northern Iowa.  Note that the Iowa 
convection probability maximum coincides with a 
solid area of observed convection; the lightning 
probabilities and observations also match well in 
this location.  Also, the finding (in the previous sec-
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Figure 8.  18-h LAMP convection probability forecast (%; upper left) and verifying “yes/no” occurrences 
(lower left; red/pink) from 1800 UTC 21 July 2010.  The corresponding lightning probabilities and veri-
fying “yes/no” occurrences are to the right.  The small white spots in the observed convection map in-
dicate missing data, which results from quality control of the radar reflectivity data used (in part) to
specify the convection predictand (see section 2). 

tion) of superior sharpness of the convection prob-
abilities is strikingly evident in this case. 
   
 Figure 9, which shows 6-h convection and 
lightning probabilities from 1800 UTC 12 August 
2010, also reveals general similarity in the two 
forecast patterns. It is noted that for a relatively 
short forecast projection, such as we have here, 
high similarity in the convection and lightning fore-
casts is expected since LAMP radar and lightning 
predictors are heavily used for both predictands.  
Still, a major difference in the convection and light-
ning probabilities appears in this case along the 
Ohio-Pennsylvania border, where a strong peak in 
the convection probabilities coincides with a flat 
field of quite low probabilities in the lightning map.  
It is remarkable that each forecast verified quite 
well in this area, as a solid area of convection was 
associated with very little CTG lightning there.  In 
fact, our examination of many cases has revealed 
that this situation is not rare.  Also note that this 
finding underscores the statement in the previous 
section that it is inherently inappropriate to verify 
the lightning probabilities with the convection ob-
servations. 

 The final example shows 12-h forecasts from 
1800 UTC 29 September 2010 (Fig. 10), where 
record setting torrential rain occurred with the rem-
nants of Tropical Storm Nicole from South Carolina 
to Virginia.  We find that the convection and light-
ning probabilities are strikingly different in this 
area, as peak convection probabilities exceeded 
90% while corresponding lightning probabilities 
were only about 10%.  Interestingly, the verifying 
maps show extensive convection but very limited 
CTG lightning there.  While low lightning probabili-
ties and scarce CTG lightning may be surprising 
for a heavy convection episode like this, we have 
noted such a situation for many tropical-system 
cases in our LAMP lightning prediction work (a 
good example is shown in Fig. 6 of CS).  
  
 Finally, note that each of the latter two cases 
contains the combination of high convection prob-
ability and low lightning probability where each 
forecast matched up well with the verifying obser-
vations.  This suggests the convection and light-
ning forecasts could be used in a complementary 
manner to help identify these distinct convection 
episodes.  The identification of these events 
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Figure 9.  As in Fig. 8, except 6-h forecasts from 1800 UTC 21 August 2010.

Figure 10.  As in Fig. 8, except 12-h forecasts from 1800 UTC 29 September 2010. 

should be quite valuable since convection with little 
or no lightning generally poses a far less hazard 
than highly electrified convection. 
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6. FINDINGS, CONCLUSIONS, AND PLANS 
 
 This study yielded the following findings: 
 
(1) The LAMP convection predictand may be more 

suitable than the LAMP CTG lightning predic-
tand for aviation applications; 

 
(2) The combined use of the GFS and NAM model 

output to produce the MOS convection fore-
cast input into LAMP was quite effective de-
spite a relatively short NAM developmental 
sample (Fig. 2); 

 
(3) The use of the GFS-NAM convection probabil-

ity product as a supplemental predictor re-
sulted in enhanced skill of the ensemble MOS 
convection probabilities (Fig. 2).  This MOS 
enhancement is incorporated into LAMP; 

 
(4) The application of geographical regionalization 

in the LAMP model development was benefi-
cial despite the relatively short developmental 
sample used (Fig. 4); 

 
(5) The skill of the LAMP convection probabilities 

was higher than that for the input MOS con-
vection probabilities, especially at the shortest 
projections (Fig. 4); 

 
(6) The skill of LAMP convection probabilities was 

much higher than that for operational LAMP 
lightning probabilities at all projections (Figs. 5 
and 6); 

 
(7) The sharpness of the LAMP convection prob-

abilities was far better than the sharpness of 
LAMP lightning probabilities (Figs. 7 - 10); 

 
(8) The LAMP convection and lightning probabili-

ties complemented one another in two of three 
cases examined (Figs. 9 and 10).  

 
 Thus, we conclude that the LAMP convection 
probabilities (when implemented) should provide 
useful forecast guidance in applications where 
convection occurrences are defined from a combi-
nation of radar reflectivity and CTG lightning data.  
Also, the complementary use of LAMP convection 
probabilities and currently operational LAMP light-
ning probabilities could aid predicting the degree of 
CTG lightning activity in convection events.  Tenta-
tively, we plan to implement the LAMP convection 
probability and categorical (not discussed) fore-
casts for at least four cycles on an experimental 
basis in June 2011. 
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