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ABSTRACT 
 
 As the renewable energy industry continues to grow so 
does the requirement for atmospheric modeling and 
analysis tools to maximize both wind and solar power. 
Renewable energy generation is variable however; 
presenting challenges for electrical grid operation and 
requires a variety of measures to adequately firm power. 
These measures include the production of non-renewable 
generation during times when renewables are not 
available. One strategy for minimizing the variability of 
renewable energy production is site diversity. Assuming 
that a network of renewable energy systems feed a 
common electrical grid, site diversity ensures that when 
one system on the network has a reduction in generation 
others on the same grid make up the difference. This 
paper introduces the Renewable Energy Network 
Optimization Tool (ReNOT) a disruptive technology used 
to maximize useable power and minimize intermittency of 
that power through site diversity. 
 
Keywords: Renewable Energy, wind-on-wind power, site 
optimization 
 

1.  INTRODUCTION 
 
 
As the renewable energy industry continues to grow so 
does the requirement for atmospheric modeling and 
analysis tools to maximize both wind and solar power. 
Renewable energy generation is variable however; 
presenting challenges for electrical grid operation and 
requires a variety of measures to adequately firm power. 
These measures include the production of non-renewable 
generation during times when renewables are not 
available. One strategy for minimizing the variability of 
renewable energy production is site diversity. Assuming 
that a network of renewable energy systems feed a 
common electrical grid, site diversity ensures that when 

one system on the network has a reduction in generation 
others on the same grid make up the difference.  
 
A similar problem faces government organizations 
interested in space to ground laser communications. Clouds 
severely attenuate a free space optical communication 
(FSOC) signal therefore in order to achieve maximum link 
performance one must use site diversity techniques to find 
optimal ground stations. We have developed and applied 
the Lasercom Network Optimization Tool (LNOT) 
modeling system to perform site selection and availability 
trade studies. This has been accomplished through the 
development of a fifteen year climatological and high 
resolution cloud database based on geostationary satellite 
imagery.  
 
The site-diversity strategy we developed for laser 
communications is used to mitigate the intermittency in 
alternative energy production systems while still 
maximizing saleable energy. Recently, LNOT has been 
adapted to optimally site potential wind turbine and solar 
collector farms. The adapted system is referred to as the 
Renewable Energy Network Optimization Tool (ReNOT). 
Although the problem is different than for FSOC, the 
modeling framework is easily extendable. The new system 
has a plug-in architecture that allows us to accommodate a 
wide variety of renewable energy system designs and 
performance metrics. For example, one might optimize site 
locations to maximize day ahead predictable power all the 
while accounting for short term variability.  
 
In this paper we describe several aspects of the ReNOT 
capability including the datasets used (both solar and 
wind), the optimization algorithm as well as the scoring 
algorithm. In an accompanying paper we illustrate several 
case studies of both wind and photovoltaic (P/V) farm 
deployment.  
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2.  DATA SETS USED IN RENOT 
 
The cloud database required to run ReNOT have been 
developed originally for the FSOC problem. Fifteen years 
of GOES imagery over the Continental United States and 
Hawaii have been run through a custom cloud retrieval 
algorithm to provide cloud properties at 4km horizontal 
and 15 minute temporal resolution, respectively.  Cloud 
analyses from the NOAA GOES imager data are derived 
using the algorithms described by Alliss et al.1 The GOES 
imager has 5 bands: visible (0.6 µm), shortwave infrared 
(3.9 µm) (SWIR), water vapor (6.7 µm), longwave 
infrared (10.7 µm) (LWIR), and split window (11.2 µm). 
The water vapor channel, is not used for cloud detection 
and is replaced by a multispectral fog product at night, and 
a shortwave reflectivity product during the day. The 
resolution of the visible band is 1 km, and the other bands 
are at 4 km. In the cloud detection algorithms the 1 km 
data is resampled to 4 km so that it may be readily 
combined with the data from the other bands.  
 Our existing high-resolution cloud cover database is 
coupled with a sophisticated solar irradiance model2,3 to 
provide the basic databases needed for the site selection of 
solar energy farms.  
 
In addition, we use the Weather Research and Forecasting 
Model (WRF) to develop a climatological wind database. 
Below is a brief description of the cloud retrieval 
algorithm as well as the wind database development.  
 

2.1  CLEAR SKY BACKGROUND 
 
The cloud algorithms use threshold tests to determine the 
prescense of clouds and require knowledge of a clear sky 
backgroun (CSB). The CSB is the radiation received by 
the GOES sensor in the absence of clouds. This 
background can be reflected, emitted, or a combination of 
both. The reflective and emissive properties of the ground 
vary from place to place; therefore, using fixed thresholds 
in the cloud tests will produce faulty cloud decisions in 
some places. For example, an albedo threshold tuned to 
detect clouds over “typical” terrain will consistently 
produce spurious clouds over the highly reflective surface 
of White Sands, NM. Similarly, seasonal variations in 
ground temperature will affect the LWIR background. 
Terrain height, soil moisture, and illumination angle also 
affect the CSB. In order to account for these differences 
the CSB must be modeled separately for each pixel at each 
time.3 
 
In order to minimize the effects of diurnal cycles, the CSB 
is processed using data from the previous 30 days at a 
single analysis time (e.g., 1200 UTC). This scheme 
isolates most of the diurnal variation in temperature and 

illumination. A separate CSB is calculated for each band 
or multispectral product in use at the particular analysis 
time: LWIR, visible, reflectivity product, and fog product. 
 
The albedo CSB is the average of the darkest ten percent 
of albedo values from the previous 30 days for the pixel 
being analyzed. The 30-day data window represents a 
compromise between making the sample large enough to 
be likely to include several clear observations and making 
the sample small enough to be sensitive to seasonal 
variations. 
 
The reflectivity CSB is calculated using the darkest ten 
percent of reflectivity product values from the previous 30 
days. The calculation is in other respects similar to the 
calculation for the albedo CSB. 
 
The fog product CSB is calculated by identifying the 
warmest 10 percent of LWIR values for the pixel over the 
previous 30 days. The fog product values for the selected 
times are averaged to form the fog product CSB. This 
procedure differs from the albedo and reflectivity versions 
(which choose clear pixels based on the albedo and 
reflectivity themselves) because both extremes of the fog 
product values indicate clouds. 
 
The LWIR CSB is determined with the aid of the LWIR 
regression model, in which each pixel’s LWIR temperature 
is estimated using a linear regression model. The 
regression model is populated with prototypical clear sky 
pixels from the entire analysis region. These prototypes are 
chosen using a series of tests that detect only pixels that 
have a high probability of being clear (i.e., even without 
the benefit of thresholds from the regression modeling they 
are clearly cloud-free.) We use the prototype pixels to fit 
coefficients of a linear regression model with twelve 
predictors, including pixel level data from the GOES 
imager, regional data from the NWS surface reports, time, 
and terrain. 
 
The LWIR regression model is used to estimate the clear 
sky LWIR brightness temperature in each pixel. The 
differences between the regression model temperature and 
the measured GOES LWIR temperature are the LWIR 
residuals. The warmest ten percent of the LWIR residuals 
are averaged to obtain the LWIR residual CSB that is used 
in the LWIR cloud test. 
 

2.2  CLOUD TESTS 
 
All of the cloud tests are made by comparison to a 
dynamically computed CSB, described in the previous 
section. 
 



3 of 8 

The visible channel is used when the solar zenith angle is 
less than 89º; however, for solar zenith angles between 89º 
and 81º cloud detections in this band are deweighted, due 
to the low signal-to-noise ratio when the scene is 
illuminated at low solar elevations. If the calculated albedo 
exceeds the CSB by a predefined threshold the pixel is 
deemed cloudy. Conversely, if the albedo is less than the 
CSB by more than the threshold, the pixel is deemed clear 
(i.e., cloud detections from other tests may be negated). 
 
The LWIR is used directly in a cloud detection test, in 
addition to being used in the multispectral tests. A pixel is 
considered cloudy if the LWIR CSB for the pixel exceeds 
the LWIR temperature by a predefined threshold. Unlike 
the visible and multispectral tests, the LWIR test is usable 
at any time of day. 
The fog product is calculated as the difference between the 
LWIR and SWIR brightness temperatures.4 The emissivity 
of water clouds in the SWIR is lower than in the LWIR; 
therefore, low clouds produce colder SWIR temperatures, 
resulting in TLW – TSW 2K.4 (The exact threshold is 
determined by the clear-sky background model described 
below.) This product can detect clouds that have LWIR 
temperatures too similar to the ground temperature to be 
detected by the LWIR alone. The fog product is also useful 
for detecting high ice clouds. These clouds are transmis-
sive and therefore appear warmer in the SWIR, resulting in 
TLW – TSW 5K.4 Because the SWIR is dominated by 
reflected radiation during the day, the fog product is usable 
only at night. 
 
The shortwave reflectivity product is calculated by sub-
tracting the thermal component from the SWIR, leaving 
only the reflected solar component.4,5 Because water 
clouds are highly reflective in the SWIR, while ice is 
poorly reflective in the SWIR, the reflectivity product can 
readily distinguish between low clouds and snow cover. 
Absent the reflectivity product, the visible channel could 
misidentify the latter as cloud. 
 

2.3  EXAMPLE CLOUD ANALYSES 
 
Figure (1a,b) below shows an example of the fifteen, 
thirteen cloud climatology over the Continental United 
States and Hawaii, respectively. The climatology indicates 
the well known pattern of couds including the relatively 
clear Southwest US and the more persistent cloud Pacific 
Northwest and Great Lakes regions. Over Hawaii, the 
peaks of Mauna Kea, Mauna Loa, and Haleakala all show 
the characteristic minimum in clouds. In addition, 
mesoscale features such as the Kona Plume and the local 
sea-breeze fronts along the Kona coast are evident in their 
local maximum in cloudiness.  

 

 
 
Figure 1a: Mean cloud occurrence over CONUS between 
1995-2009. (b) same but for Hawaii. 
 
Because this database has a temporal resolution of 15 
minutes the cloud correlations between sites and in time 
can be explicity calculated instead of inferred. The cloud 
database has been validated against whole sky imager 
(WSI) over a nine month period as well as pyrheliometer 
data at multiple locations throughout the United States. 
Results indicated an excellent agreement between the two 
datasets. Comparisons were also made to data from the 
Desoto photovoltaic farm located in Florida8. Correlations 
between the database were approximately 0.7. 
 
 

2.4  THE WIND DATABASE 
 
The Weather Research and Forecasting (WRF) mesoscale 
model is applied to generate high-resolution wind 
databases to support the site selection of wind farms. 
These databases are generated on High Performance 

~>

~<
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Computing systems such as the Rocky Mountain 
Supercomputing Center (RMSC). WRF is a high 
resolution, limited area, non-hydrostatic model. We 
successfully performed decadal simulations with WRF, 
running in climate mode, for current and future periods 
over CONUS. We utilized a number of features 
implemented in the WRF model that allow realistic 
representation of the climate system in long-term 
simulations, e.g. variable CO2 concentrations, diurnal 
variations of the skin Sea Surface Temperature (SST), 
deep soil temperature and SST updates. The NCEP 
reanalysis and the ECHAM5/MPI-OM General Circulation 
Model (GCM) are used as the forcing model which 
provide the necessary initial and boundary conditions. For 
the present climate (1995- 2009), WRF was forced with 
NCEP reanalysis data. For the 21th century climate, we 
used an ECHAM5 simulation with the Special Report on 
Emissions (SRES) A1B emissions scenario. WRF was run 
in nested mode at spatial resolution of 108 km, 36 km and 
12 km and 28 vertical levels. The wind speed at 
approximately 40 meters height (hub-height for most wind 
turbines) is saved every hour. In this study the Single-
moment 5-class (WSM5) microphysics scheme and the 
Kain-Fritsch convective parameterization scheme is 
utilized. The Noah Land Surface Model and Yonsei 
University (YSU) Planetary Boundary Layer scheme are 
used. Shortwave and longwave radiation are computed 
with the CAM SW and LW scheme.  
 
Comparisons of model output are made to data collected 
from a wind farm in Montana and show correlations 
around 0.7. In addition, comparisons were made to wind 
datasets obtained from the National Renewable Energy 
Lab (NREL) website   
(http://www.nrel.gov/wind/integrationdatasets/western/dat
a.html). Wind speed data were downloaded for four 
locations nearest the cooresponding WRF grid points for 
the period 2004-2006. The NREL dataset is valid at 100 
meters AGL and 1 arc-minute spatial and 10 minute 
temporal resolution, respectively. The data were 
aggregated so they could be more easily compared to our 
dataset which is valid at 12km and 1 hour resolution. 
Results for the four sites are shown in table 1 below. 
 
It should be stated that although we have high confidence 
in the quality of these databases the ReNOT tool has been 
designed in such a way to accommodate any other cloud or 
wind database. The only requirement is that the database 
contain a time series of the parameters of interest and not 
simply the means over time of the parameters. This way 
the correlation between sites can be explicity resolved in 
the optimization. In addition, the dataset is required to be 
gridded spatially. This then makes it possible to substitute 

the users of choice preferred dataset. This make ReNOT 
essentially agnostic to the data used for site selection.  
 

Correlations between NREL wind data and RENOT 
wind data from 2004-2006 

Site 1 0.68 

Site 2 0.61 

Site 3 0.68 

Site 4 0.70 

Table 1: Correlations between the NREL Western Wind 
dataset and that developed for this project. Correlations are 
relatively high given the differences in resolution.  
 
 
3. MODELING AND OPTIMIZATION APPROACH 

 
In order to translate the cloud data into information useful 
for computing the incoming solar radiation we use a 
sophisticated solar model and statistics of cloud 
height/thickness to compute direct and indirect insolation. 
Insolation is computed using a multi-layer radiative 
transfer model2,3.  The orientation geometry of the solar 
panels is modeled directly from design specifications of an 
installed panel systems (i.e., SunPower T0 panels) with a 
pointing algorithm. In addition, panel-to-panel shadowing 
is accounted for  in the  solar calculation. The solar model 
was empirically fit to the aggregate power generation data 
provided from Nov and Dec 2009 Desoto data8. 
 
An algorithm for finding an optimal network of renewable 
energy generating stations faces two competing goals.  
First, it must search efficiently through the configuration 
space by using information gleaned from networks 
evaluated earlier in the process to guide the search toward 
even better networks.  Second, it must avoid getting 
trapped in locally optimal solutions, which, though better 
than other nearby candidates, are inferior to configurations 
more distant in the configuration space.  These goals 
conflict because using a lot of information from previous 
evaluations necessarily restricts us to a more local search.  
Conversely, searching more broadly through the 
configuration space precludes us from taking advantage of 
what we have discovered about previous configurations we 
have evaluated. We strike a balance between these 
conflicting goals by adopting some strategies from genetic 
algorithms, which provide a systematic way of starting out 
with a broad search early in the calculation and narrowing 
in to a more local search as the calculation progresses. 
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Each iteration of the renot algorithm begins by identifying 
a pool of eligible stations.  All of the new networks 
examined in the iteration will have stations drawn from 
this pool.  The number of stations that remain in the pool 
from one iteration to the next determines how broad or 
focused the search will be.  Replacing all or most of the 
stations results in a broader search; replacing only a few 
results in a more focused search.  In the parlance of 
genetic algorithms, the station pool represents the gene 
pool, and the fraction of stations replaced at each iteration 
represents the mutation rate.  Stations are selected for the 
pool using a quasi-random number generator, instead of 
the more traditional pseudo-random number generator.  
This innovation allows us to sample the stations more 
uniformly across the geographical area of interest, taking 
advantage of our intuition that the best networks will be 
geographically diverse. 
 
Once the station pool is in place we create networks to 
evaluate by drawing stations randomly from the pool.  
Currently, we enforce non-duplication in these station 
draws, but one could also allow duplicates as a way of 
representing stations with unequal nameplate capacities 
(i.e., a station appearing twice in a network represents a 
single station with twice the capacity of a baseline station).  
All of the stations so generated are evaluated and ranked 
against each other and against the stations evaluated in 
previous iterations.  The stations appearing in the top few 
networks (of all time, not just this iteration) are marked to 
be kept in the next iteration, and the remainder will be 
replaced. 
 
The exact number of stations to be kept in the pool from 
one iteration to the next varies throughout the calculation 
according to a schedule chosen at the beginning of the 
calculation.  Initially, we keep only the stations in the best 
network.  As the calculation progresses we keep more and 
more stations until eventually only a single station is being 
retained.  Thereafter we begin to reduce the size of the 
station pool, still replacing only a single station at each 
iteration.  By the end of the calculation, the pool is just one 
station larger than the network size, and we are keeping all 
but a single station.  Thus, we proceed from a very broad 
search, in which we are selecting a lot of new stations at 
random in every iteration, to a very narrow search, in 
which we are keeping the best network we have seen so far 
and generating new networks by replacing individual 
stations. 
 

 

 
  
 
Figure 2:  The ReNOT optimization process takes place in 
four discrete steps.  
 
A typical optimization run evaluates the power generation 
on the order of 109 networks of wind and/or solar farms. 
These calculations make several simplifying assumptions 
in order to speed up the individual availability calculations. 
Once the optimization algorithm has identified a small 
number (10–20) of candidate networks, a more compre-
hensive evaluation is performed for each network. This 
evaluation includes a detailed calculation of power 
generation, both raw and useable as well as statistics of 
ramping events.  
 

4. SCORING METRICS 
Any optimization problem requires a scoring metric in 
order to evaluate networks of wind and/or solar farms.  
ReNOT uses a scoring metric which optimizes on useable 
power. Useable power is our estimate of that amount of 
power that can be reliablly counted on by minimizing 
impacts of curtailment as well as the dependency on 
weather forecasts of wind and clouds. In this case 
curtailment represents an approxoimation to the excess 
power that can not be sold on market and therefore has to 
be dumped. This would be due to short-term fluctuations 
in power generation over the course of an hour, for 
example. The other consideration is the reliance on 
weather prediction. Prediction reflects the ability to 
forecast tomorrow’s power generation. In general, 
networks with little curtailment and that produce more 
consistent, non-varying power day after day will be 
favored. Below we define three scoring metrics for wind 
(M1,M2,M3) and for solar (S1,S2,S3). The M3 and S3 
metrics define the optimization metric referred to as 
useable power. 
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Wind specific metrics: 
Power from the station is the result of the solar or wind 
calculation for the location and time. 

!!" = Power  from  station  i  at  time  index  j 
! ∈ 1. . .! , 

! ∈ 1… !  
 
Summation over all stations at time j is the network power 

!! = !!"

!

!!!

 

 
Maximum power generated by any station at time j over 
the network 

!! = max
!!!,!

!!"  

 
In this case, the metric is designed to produce a network 
that narrows in on the single best location for power 
production, on the mean. 

M1 =
1
!

!!

!

!!!

 

 
In the case of M2, the metric is designed to produce a 
network that widens out to a maximally diverse network, 
even at the expense of very poor aggregate power. 

M2 =
1
!

!!

!

!!!

 

 
The running minimum network sum-power over a trailing 
time window (K+1 steps wide). 
 

!!! = min
!!!,!

!!!!  

 
The trailing H-step mean of the running K-step trailing 
minimum. This will be a proxy for a day-ahead forecast 
with H set to enough  time-steps to cover 24 hours (In 
principal, this could be set to any time length). 
 

!!
!,!

=
1
!

!!!!!
!

!!!

 

 
The M3 metric caps utility at no more than the previous 
day's average power, and accounts for time-to-time 
variability over a shorter window.  Networks that 
consistently produce power from day to day and time to 
time will be favored. 

M3 =
1
!

min !!! ,!!
!,!

!

!!!

 

 
The metrics, M1, M2, and M3 represent a basic set that 
should span the space for ReNOT testing. Refinements 
could include better representations of ramping costs, 
better day-ahead forecast proxies, and season/hourly 
weights by electrical demand. 
 
Solar specific metrics: 
 
The amount of power from the station that would be 
produced under a perfectly clear sky. 
 
!!" = Clear  sky  power  from  station  i  at  time  index  j 

 
The sum of predicted power over all stations in the 
network: 

!! = !!"

!

!!!

 

 
Indicator flag for the network, showing whether it  
potentially produce power or not: 
 

!! =
1 ∶ !! > 0  
0 ∶ !! ≤ 0  

 
Fractional output level of the network is the fraction of the 
potential clear-sky power that is produced: 
 

!! =
!!
!!
∶ !! > 0  

0 ∶ !! ≤ 0
 

 
Minimum fractional power produced by the network over 
the trailing K time steps for those time when it could have 
produced power: 
 

!!! = min
!!!,!
!!!!!!

!!!!  

 
The trailing H-step average of the minimum fractional 
power for those times when the network could have been 
producing power. 
 

!!
!,!

=

!!!!!!
!!!

!!!!!
!!!

:   !!!!

!

!!!

> 0

0 :   !!!!

!

!!!

≤ 0
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The corresponding S3, solar metric caps utility at no more 
than the previous 24-hour average power fraction times the 
current clear-sky power potential, excluding times when 
the network cannot produce power, and accounts for time-
to-time variability over a shorter window by using the 
lowest fractional power output over last K-steps at each 
time.  Networks that consistently produce power from day 
to day and time to time will be favored.  
 

S3 =
1
!

min !!! ,!!
!,!

!

!!!

!! 

 
The K-steps (e.g., four 15 minutes steps) trailing average 
assures that rapidly ramping power levels create a poor 
value, favoring short term steady power output. The 24 
hour average is a proxy of a next day's forecasted power 
output, favoring networks with high day-to-day persistence 
accuracy, which reasonably implies a network with a 
better day-ahead forecastability.  
 
A graphical illustration of the M3/S3 metric is shown in 
Figure 3.  

 
Figure 3: Illustration of the M3 metric. 

 
The raw power of the network is shown by the blue line as 
a function of time. The short-term variability of power due 
to rapid fluctuations is shown in red (ramp-limited). The 
proxy for the day ahead prediction is given in the dash 
green line. The useable power is simply the minimum of 
the previous two (black line). In this case the useable 
power is that power that which is limited by short-term 
curtailment and the ability to predict tomorrows 
generation. Networks with large Usable Power will be 
favored by the optimization.  
 
The ReNOT tool can accommodate numerous constraints 
(e.g., number of sites, the geographic extent of the 

optimization, proximity to high-voltage transport lines, 
terrain constraints, population constraints). This capability 
is critical because of the practicalities of siting wind and/or 
solar farms. In some cases the optimal set of 
geographically diverse sites may not be practical due to 
issues stated above. If those constraints are factored in then 
a more reliable and defendable network can be found.   
 
 

5. SUMMARY 
 
The Renewable Energy Network Optimization Tool 
(ReNOT) has been developed to assist in the optimal 
placement of networks of wind and/or solar farms . 
ReNOT optimizes site selection to maximize usable 
power, by minimizing power intermittency and 
maximizing base load power of the system. It takes into 
consideration constraints on placement such as: location of 
transmission lines, population density, land costs and 
others. Use of this tool can assist in minimizing the 
conventional energy reserve requirements of the utility 
industry. In addition, ReNOT is a powerful tool that can 
assist policy makers, regulators, regional public 
stakeholders, transmission operators, and individual 
renewable operators and investors. 
  
Finally, the development of high resolution regional 
climate simulations through dynamic downscaling is being 
performed to understand future wind, cloud, and 
temperature patterns and their impacts on existing and 
future renewable energy production capability. Running 
ReNOT on these future data sets allows us to select sites 
optimized for tomorrow’s climate, rather than yesterday’s. 
Part II of this paper will present case studies of both a 
wind and solar farm optimization. 
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