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1. Introduction 
 
Recently, there has been much interest in hybrid variational data assimilation research.  
See e.g., Wang 2010, Bowler et al. 2009, and Wang et al. 2008a, b.  This paper continues 
that research by extending the work of Wang et al. 2008a, b to a regional version of the 
NOAA Gridpoint Statistical Interpolation (GSI) global hybrid assimilation scheme 
described by Wang 2010.  For this research, the NOAA Environmental Modeling Center 
(EMC) developed the GSI global hybrid code in collaboration with the University of 
Oklahoma.  We modified that code to incorporate an ETKF interface and apply the 
GSI/ETKF hybrid in a regional setting with WRF-ARW. 
 
2. The GSI/ETKF hybrid scheme 
 
The GSI/ETKF regional hybrid cycling algorithm follows that of Wang et al. 2007.  We 
start with an ensemble of background forecasts.  The assimilation cycle begins by 
calculating the ensemble mean and perturbations.  It proceeds by updating the mean with 
the GSI/ETKF regional hybrid and updating the perturbations with the ETKF.  The 
mathematical formalism is identical to that of Wang et al. 2008a.  The ETKF uses the 
method described by Bishop et al. 2001 with the inflation factor strategy described by 
Wang et al. 2007.  For the ETKF, we use an averaging period of 10 days. 
 
After updating the ensemble mean and perturbations, we reconstitute the total fields for 
each ensemble member, update the boundary conditions, and use WRF/ARW to make 
12-hr forecasts for each ensemble member.  Those forecasts become the background 
forecasts for the next cycle, and the assimilation process is repeated. 
 
In the GSI/ETKF hybrid, the weighting between the variational increment and the 
ensemble increment is controlled by ß.  When ß=1.0, we get the variational increment.  
When ß=0.0, we get the ensemble increment.  When ß is between 0.0 and 1.0, we get the 
hybrid increment.  Additional GSI/ETKF hybrid parameters are: (i) H – the horizontal 
localization length scale in km , (ii) V – the vertical localization length scale in number of 
vertical gridpoints, and (iii) N – the number of ensemble members.  As the localization 
scales decrease, the radius of influence for a particular observation decreases, reducing 
the amount of noise in the increment.  For the experiments discussed in this paper, we 
generally set ß=0.5, H=1,500 km, V=20 grid points, and N=20 ensemble members.  The 
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control experiment uses those parameter settings with the Wang et al. 2007 inflation 
algorithm and is denoted WG07. 
 
3. Experimental design 
 
The WRF model is described by Skamrock et al. 2005.  We ran WRF on the CONUS 
domain, which covers North America and the surrounding oceans.  We used a coarse 
resolution of 200 km on a 45 x 45 horizontal grid with 27 vertical levels.  The model top 
was located at 50 hPa.  This is the same configuration as was used by Wang et al. 2008a, 
b.  The coarse CONUS domain was chosen for similar reasons as identified by Wang et 
al. 2008a, b i.e., to facilitate running a large number of experiments.  The same cautions 
about applying our results to higher resolution experiments apply.  We plan to extend the 
studies reported in this paper to higher resolution. 
 
For the experiments reported here, WRF was initialized with GFS analyses and the GFS 
forecasts were used for the boundary conditions.  We starting the assimilation 
experiments at 12Z on August 15, 2007 and cycled for 10 days until 12Z on August 25, 
2007.  During that period, Hurricane Dean formed within the WRF domain at 52° W, 
12.5° N on August 15, 2007 and moved across the domain in a WNW direction.  On 
August 19, 2007, Hurricane Dean made landfall at 97° W, 21° N in Mexico. 
 
In our experiments, we used 12h-cycling.  For any particular cycle, the GSI/ETKF hybrid 
used all conventional observations obtained from the NCEP operational datasets.  The 
ETKF used only radiosonde wind, temperature, and moisture observations.  The ETKF 
also excluded observations when the relative observation error (defined as observation 
error divided by the observation) exceeded 20 because the Wang et al. 2007 inflation 
algorithm behaved poorly when the innovations were relatively small and the observation 
error were relatively large.2  Our experiments showed that the inflation algorithm 
behaved properly when the maximum relative observation error cutoff was set to 20.  
Similarly, we used a minimum relative observation cutoff of .0001 to exclude 
observations with near-zero observations error.  We did not investigate the sensitivity of 
our results to those upper and lower relative error bounds. 
 
For cycling, the initial ensemble was generated by adding random perturbations drawn 
from a normal distribution having the same distribution as the WRFDA background error 
covariance to the August 15, 2007 00Z analysis and boundary conditions.  That initial 
ensemble was then used to obtain an ensemble of WRF 12-h forecasts.  That forecast 
ensemble became the background forecasts for starting the assimilation cycling on 
August 15, 2007 at 12Z. 
 
For verification, we used all radiosonde wind, temperature, and moisture observations 
and surface synoptic observations that pass the WRFDA quality control procedure based 
on the non-ensemble GSI background forecasts. Our verification began on August 17, 
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2007 at 12Z after two days of cycling.  We verified our results on the entire horizontal 
and vertical domain.  
 
4. Single observation experiments 
 
We performed many single observation experiments to confirm the conceptual accuracy 
of the GSI/ETKF regional hybrid.  For those experiments, we placed a single temperature 
observation of 1°K at ~500 hPa at the horizontal location indicated by the black dot in 
Figure 1.  Due to space limitations, we present only a subset of those experiments.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Single observation experiment weighting factor sensitivity.  The solid black 
lines are contours of geopotential height in 10m.  The shaded contours are the 
temperature increment in °C.  ß represents the weighting between the variational 
increment (ß=1.0) and the ensemble increment (ß=0.0). 

                                                
3  In a single observation experiment for the initial ensemble, as the ensemble size increases, the ensemble 
analysis increment should approach the variational increment.  However, here we generated the initial 
ensemble with the WRFDA background error covariance as opposed to the GSI error covariance.  That 
means that as the ensemble size increases, the ensemble increment will approach WRFDA variational 
increment and be slightly different from the GSI variational increment.  Although not shown, we have 
verified that as the ensemble size increases, the ensemble increment approaches the variational increment. 

August 25, 2007 12Z 

B=.75 B=.50 

B=0.0 B=.25 
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Figure 1 shows the single observation increment sensitivity to varying ß between 0.0 and 
1.0.  The background forecasts were taken from August 25, 2007 at 12Z, the last day of 
the cycling experiment, to demonstrate the increment’s flow dependence.  Figure 1 shows 
that for ß=0.0 the ensemble increment had horizontal structure and was stretched along 
the geopotential contours.  As ß approaches 1.0, the horizontal structure lessened, and the 
increment more closely resembled the stretched variational increment.  Although not 
shown, we have confirmed that similar stretching occurred in the vertical. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Single observation experiment horizontal localization sensitivity.  The solid 
black lines are contours of geopotential height in 10m.  The shaded contours are the 
temperature increment in °C.  H represents the horizontal localization length scale in km. 
 
Figure 2 displays the single observation increment sensitivity to changes in H, the 
horizontal localization length scale.  It shows a reduction in the lateral fine structure as H 
decreased from 1,500 km to 750 km.  When H was increased to from 1,500 km to 
4,500 km with an increment of 1,500 km (not shown), there was no noticeable change in 
the lateral fine structure.  When V, the vertical localization length scale was varied from 
10 grid points to 40 grid points with an increment of 10 (not shown), we found similar 
variations. 
 
5. Sensitivity experiments to determine the optimal ß and H 
 
In this section, we study the optimal ß and H configuration for the GSI/ETKF regional 
hybrid.  We ran 10-day cycling experiments for each configuration with ß set to 0.0, 0.25, 
0.50, 0.75, and 1.0, and H set to 750 km, 1,500km, 3,000km, and 4,500 km for a total of 
20 experiments (individual experimental results not shown).  We found that: (i) for non-
surface u, v, T, and q, the optimal configuration was ß=0.75 and H=750 km, (ii) for near-
surface u, the optimal configuration was ß=1 and H=NA, (iii) for near-surface v, the 
optimal configuration was ß=.75 and H=3,000 km, (iv) for near-surface T, the optimal 
configuration was ß=.5 and H=750 km, and (v) for near-surface q, the optimal 
configuration was ß=.5 and H=1,500.   
 

H=1500 H=750 
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Figure 3.  Vertical profiles of analysis and forecast RMSE for the control (WG07), 
ensemble/non-hybrid GSI (B1), and the non-ensemble GSI (DETR).  The solid lines 
display the analysis RMSE (denoted OMA), and the dashed lines display the forecast 
RMSE (denoted OMF). 
 
6. Analysis and forecast verification  
 
In this section, we compare the analysis and forecast root mean square error (RMSE) 
from WG07, the ensemble/non-hybrid GSI (B1), and the non-ensemble GSI (DETR) 
experiments.  
 
Figure 3 shows vertical profiles of analysis and forecast RMSE for WG07, B1, and 
DETR.  The solid lines represent the analysis RMSE, and the dashed lines represent the 
forecast RMSE.  Figure 3 shows that the DETR analyses fit the observations better than 
the B1 and WG07 analyses.  That result is consistent with the findings previous 
investigators.  Figure 3 also shows that the WG07 forecasts fit the observations better 
than the B1 and DETR forecasts.  The fit was better for: (i) u and v in the middle and 
upper troposphere, (ii) T in the lower troposphere, and (iii) q in the middle and lower 
troposphere. 
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Figure 4.  Vertical profiles of analysis and forecast bias for WG07, B1, and DETR.  The 
solid lines display the analysis bias (denoted OMA), and the dashed lines display the 
forecast bias (denoted OMF). 
 
Figure 4 is the same as Figure 3 except it displays vertical profiles of the bias.  Generally, 
the WG07 analysis bias was less than the B1 and DETR analysis biases.  See: (i) u in the 
middle and upper troposphere, (ii) T in the lower and upper troposphere, and (iii) q in the 
middle and lower troposphere.  In Figure 4, it is difficult to characterize the forecast 
biases because they varied with the meteorological variables. 
 
7. Sensitivity to inflation factor scheme 
 
In this section, we investigate the sensitivity of  RMSE to the ETKF inflation factor 
scheme.  We consider four algorithms: (i) WG03 – the Wang and Bishop 2003 scheme 
which used innovation averaging, (ii) WG07 – the control experiment which used the 
Wang et al. 2007 scheme with innovation and projection factor averaging, (iii) BW08 – 
the Bowler et al. 2008 scheme which used the ratio of the spread at the previous and 
current cycle, and (iv) TRNK – an experimental scheme that used the Wang and Bishop 
2003 scheme but averaged the final inflation factor as opposed to the innovations.  We 
ran 10-day cycling experiments with those inflation schemes for the Hurricane Dean 
case.  All parameters were the same as in WG07 except for the inflation factor scheme.  
The results from the inflation factor scheme sensitivity experiments are displayed in the 
left panel of Figure 5.   
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Figure 5.  Left Panel – inflation factor time series for the WG03, WG07, BW08, and 
TRNK schemes with magnitude displayed on the left ordinate axis.  WG07-rho denotes 
the Wang et al., 2007 project factor time series with magnitude displayed on the right 
ordinate axis.  Right Panel – inflation factor time series for the WG07 and R( ) 
experiments. 
 
The left panel of Figure 5 shows that WG03, WG07 and TRNK became stable after four 
cycles.  BW08 became stable after eight cycles.  WG03 and BW08 had the largest 
magnitudes, TRNK had moderate magnitudes, and WG07 had the smallest magnitudes.  
WG07 had the smallest inflation factors because it used an adaptive projection factor 
(WG07-rho in the left panel of Figure 5) that corrected for errors in the eigenvector 
projections.  The results for all schemes, except TRNK, had bi-cycle oscillations that 
have been observed by other researchers and attributed to over/under inflation.  
See Bowler et al. 2008.  Our results show that those oscillations were due to the number 
of ETKF observations. 
 
The right panel of Figure 5 displays inflation factor time series for experiments that held 
to number of observations entering the ETKF (ETKF observations) constant from one 
cycle to the next.  For those experiments: R2.5 denotes 2,500 randomly selected ETKF 
observations per cycle, R5.0 denotes 5,000, R7.5 denotes 7,500, and R10 denotes 10,000.  
For the R(  ) experiments, the ETKF observations were selected randomly from the set of 
between 15,000 and 18,000 observations used by the WG07 ETKF.  The right panel of 
Figure 5 shows that when the number of ETKF observations was held constant, the bi-
cycle oscillation disappears. 
 
The bi-cycle oscillation from Figure 5 is also present in ensemble spread time series.  
See Figure 6.  The upper panels of Figure 6 show the analysis ensemble spread, i.e., the 
ETKF ensemble spread, for the different inflation schemes when the number of ETKF 
observations was not held constant. The lower panels of Figure 6 show the analysis 
ensemble spread for WG07 when the number of ETKF observations was held constant.  
For the upper panels, at 00Z the number of ETKF observations was relatively small 
O(15,000) and resulting analysis ensemble spread was relatively large (number of 
observations not shown).  At 12Z, the number of ETKF observations was relatively large 
O(17,000) and the analysis ensemble spread is relatively small (number of observations 
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not shown).  The lower panels show that the oscillation disappears when the number of 
ETKF observations was held constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Upper Panels – ensemble spread time series for u, v, T, and q from the WG03, 
WG07, BW08, and TRNK schemes.  Lower Panels – ensemble spread time series for the 
WG07 and R(  ) experiments. 
 
We also ran verifications on the R( ) experiments to determine the sensitivity of analysis 
and forecast RMSE to varying the number of ETKF observations.  Those results are 
shown in Table 1.  The yellow shading identifies the configuration with the lowest 
forecast RMSE for each meteorological variable.  Table 1 shows that reducing the  
 

UPR R 2.5 R 5.0 R 7.5 R 10. WG07 
u (m/s) 3.234 

(2.323) 
3.232 

(2.326) 
3.230 

(2.325) 
3.240 

(2.324) 
3.232 

(2.327) 
v (m/s) 3.250 

(2.363) 
3.249 

(2.364) 
3.251 

(2.365) 
3.254 

(2.362) 
3.257 

(2.369) 
T (K) 1.487 

(1.210) 
1.484 

(1.208) 
1.485 

(1.207) 
1.485 

(1.214) 
1.491 

(1.211) 
q (g/kg) 1.297 

(0.867) 
1.298 

(0.872) 
1.299 

(0.866) 
1.302 

(0.869) 
1.305 

(0.870)  
 

Table 1.  RMSE for the WG07 and R(  ) experiments for non-surface meteorological 
variables.  The forecast RMSE is outside the parentheses, and the analysis RMSE is 
inside the parentheses.  The yellow shading identifies the lowest forecast RMSE for each 
meteorological variable. 
 
number of ETKF observations improved the analysis and forecast RMSE.  Table 1 also 
shows that the optimal number of ETKF observations ranged between 2,500 and 7,500 
and was variable dependent.   
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The RMSE changes between the different experiments in Table 1 are small and may not 
be significant.  We compared those changes with RMSE changes obtained by increasing 
the ensemble size from 20 to 80 in increments of 20 (not shown) and found that the 
changes in Table 1 were comparable.  Similarly, we compared the RMSE magnitudes and 
changes in Table 1 to those in Table 2 from Wang et al. 2008b and found that they were 
comparable.  Thus, we conclude that the results in Table 1 are meaningful. 
 
Next, we review verification of the inflation factor scheme sensitivity experiments.  
Those results are displayed in Table 2 for the non-surface meteorological variables.  We 
performed a similar verification for the near-surface variables, but those results are not 
presented.  Table 2 shows that: (i) WG07 was the optimal inflation factor scheme based 
on the u, v, and q forecast RMSE and (ii) TRNK was the optimal scheme based on the 
T forecast RMSE.  For the near-surface variables, we found similar results: (i) WG07 was 
optimal based on the u, T, and q forecasts RMSE, (ii) BW08 was optimal based on the v 
forecast RMSE, and (iii) DETR was optimal based on the surface pressure, Ps forecast 
RMSE. 
 

UPR DETR TRNK WG03 WG07 BW08 
U (m/s) 3.294 

(2.293) 
3.245 

(2.341) 
3.259 

(2.330) 
3.232 

(2.327) 
3.256 

(2.327) 
V (m/s) 3.320 

(2.267) 
3.259 

(2.376) 
3.286 

(2.370) 
3.257 

(2.369) 
3.272 

(2.368) 
T (K) 1.487 

(1.142) 
1.473 

(1.201) 
1.492 

(1.200) 
1.491 

(1.211) 
1.488 

(1.200) 
q (g/kg) 1.361 

(0.830) 
1.308 

(0.870) 
1.311 

(0.871) 
1.305 

(0.870) 
1.308 

(0.871)  
 
Table 2.  RMSE for the inflation factor sensitivity experiments for non-surface 
meteorological variables.  The forecast RMSE is outside the parentheses, and the 
analysis RMSE is inside the parentheses.  The yellow shading identifies the lowest 
forecast RMSE for each meteorological variable. 
 
8. Spread verification of the inflation factor schemes 
 
One measure of whether a perturbation generation strategy works properly in an 
ensemble prediction system is the degree to which the resulting ensemble spread predicts 
the background forecast errors for the next cycle.  See Wang et al. 2008a, b.  Wang et al. 
2008a. b and Wang et al. 2007 calculate the background forecast error as the RMS 
innovation minus the observation error.  See Eq. 1, Wang et al. 2008b.  Figure 7 displays 
vertical profiles of the background forecast error and ensemble spread.  Ideally, those  
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Figure 7.  Vertical profiles of background forecast error (denoted INNO) and the ETKF 
ensemble spread (denoted SPRD) for the inflation factor scheme sensitivity experiments.  
The background forecast error is defined as the RMS innovations minus the observation 
errors.  Experiment identifiers are as defined earlier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Plots of background forecast error (denoted INNO) and the ETKF ensemble 
spread (denoted SPRD) for u at 500 hPa from the inflation factor scheme sensitivity 
experiments.  Background forecast error is as defined in Figure 7.  Experiment identifiers 
are as defined earlier. 

WG07 

WG03 TRNK 

BW08 
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profiles should be coincident.  Figure 7 shows results for u, v, and T.  It does not include 
results for q because the associated relative observation errors fell below the minimum 
relative observation error cutoff.  That was an inadvertent exclusion that is not thought to 
have had a material impact of our results. 
 
Figure 7 shows that for u and v the WG03 and WG07 background forecast error profiles 
were nearly coincident with the ETKF ensemble spread profiles except in the upper 
troposphere.  The BW08 and TRNK profiles had a gap between the profiles throughout 
the troposphere.  Figure 7 also shows that the T profiles had large gaps in the middle and 
lower troposphere.  Wang et al. 2008b found similar result for T and suggested it was 
associated with errors in WRF’s boundary and surface parameterizations. 
 
Next we consider whether the ETKF spread can distinguish between large and small 
background forecast errors.  We use the method of Majumdar et al. 2001 as applied by 
Wang et al. 2008a and Wang et al. 2007.  We collected u innovation and ensemble spread 
data from observation locations at 500 hPa and processed it according to the procedure of 
Wang et al. 2008a.  We used 15 bins and had 130 data points per bin.  The results are 
presented in Figure 8 with ETKF ensemble spread along the abscissa and background 
forecast error along the ordinate.  Ideally, the plotted points should fall along the 45º line 
that is included for reference. 
 
Figure 8 shows that for TRNK all points fell above the 45º line.  We suspect that TRNK’s 
final inflation factor averaging caused the ensemble spread to systematically 
underestimate the background errors i.e., TRNK systematically underestimated the 
spread.  Data from WG03, WG07, and BW07 generally fell along the 45º line.  For those 
schemes, the ensemble spread distinguished between large and small background forecast 
errors.   
 
9. WG07 and DETR 12-h forecast differences valid at August 22, 2007 12Z 
 
Finally, we look at differences between the WG07 and DETR 12-h forecasts for a time 
when the WG07 u and v forecasts fit the observations better than the DETR forecasts.  
The forecast differences are plotting in Figure 10 for the 700 hPa and 300 hPa levels.  In 
Figure 10, geopotential height is plotted in m with the blue contours, wind speed is 
plotted in m/s with the shaded contours, and the wind vectors are in m/s. 
 
The largest differences are in eastern Pacific equatorial region where DETR over-
predicted the easterlies.  DETR also over-predicted the 700 hPa anti-cyclonic circulation, 
300 hPa cyclonic circulation over southern Baja and western Mexico.  As discussed by 
Wang et al. 2008b, such anomalous circulations can have detrimental effects of the 
precipitation and moisture analyses and forecasts.  We have not investigated the 
anomalous circulation impacts for this paper. 
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Figure 9.  DETR minus WG07 12-h forecast differences valid at August 22, 2007 12Z.  
The blue contours represent geopotential height in m, shaded contours represent wind 
speed in m/s, and the wind vectors are in m/s. 
 
10. Discussion and conclusions 
 
In this paper, we presented results from testing the GSI/ETKF regional hybrid and 
comparing various ETKF inflation factor algorithms.  As part that work, we conducted 
single observation and hybrid parameter sensitivity experiments. 
 
Our results showed that for a single T observation of 1°C located at 500 hPa in a 
geoptential gradient, the GSI/ETKF regional hybrid behaved as expected.  Specifically, 
the ensemble increment (ß=0) had horizontal structure and was stretched along the 
geopotential contours.  The variational increment (ß=1) was not shown but was 
confirmed to be symmetric.  The hybrid increment (0.0<ß<1) showed that as 
ß approached 1.0 from 0.0, the horizontal structure lessened and the increment tended 
toward a stretched version of the variational increment.  Although not shown, similar 
behavior occurred in the vertical. 
 
We also examined the single observation increment sensitivity to changes in H (shown) 
and V (not shown) and found that as the localization scales were reduced far-field fine 
structure was reduced.  In summary, the single observation experiment suggested that the 
GSI/ETKF regional hybrid is working properly. 
 
Next, we conducted hybrid sensitivity experiments to determine the optimal values of ß 
and H.  For non-surface meteorological variables (u, v, T, and q) the optimal 
configuration was ß=0.75 and H=750.  For near-surface variables (u, v, T, q, and Ps) was 

700 hPa 300 hPa 
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variable dependent.  ß ranged between 0.5 and 1.0, and H ranged between 750 km and 
3,000 km.  We suspect that those results are application dependent.  We used coarse 
resolution and a subset of conventional observations (only the radiosonde u, v, T, and q 
observations) as ETKF observations.  If the resolution were increased, the optimal values 
of ß and H would likely change, so caution should be used when applying these results to 
other resolutions.  The optimal ß and H configurations would likely be unaffected by 
changes in the types of ETKF observations. 
 
We compared the analysis and forecast RMSE for the GSI/ETKF regional hybrid 
(WG07) with the ensemble/non-hybrid GSI (B1) and ensemble GSI (DETR) RMSEs.  
We found that WG07 generally had higher RMSE for the analyses and lower RMSE for 
the forecasts.  Those results were consistent with the results of Wang et al. 2008b for 
WRFDA with real data.  We also compared the WG07 bias with the B1 and DETR 
biases.  We found that the WG07 analysis bias was generally less, but the forecast bias 
was difficult to characterize because the comparison results varied with meteorological 
variable. 
 
We also conducted an ETKF inflation factor sensitivity study to determine whether there 
is an optimal inflation algorithm.  We compared the WG03, WG07, BW07, and TRNK 
schemes and found that WG07 was preferred. (Our results showed that: (i) WG07 was 
optimal for u, v, and q, and (ii) TRNK was optimal for T.  However, TRNK did not 
perform well in the spread verification analysis.  Thus, we conclude that WG07 is the 
optimal inflation algorithm.) 
 
The inflation factor sensitivity experiments showed a bi-cycle oscillation in the inflation 
factor and in the ETKF ensemble spread.  We showed that the oscillation was due to 
variations in the number of ETKF observations at the different cycle times, i.e, at 00Z 
there were O(15,000) observations with low inflation and high spread, and at 12Z there 
were O(17,000) observations with high inflation and low spread.  To address that issue, 
we conducted as series of experiments that held the number of ETKF observations 
constant between cycles, identified as the R(  ) experiments.  Results from those 
experiments showed that holding the number of ETKF observations constant solved the 
oscillation issue without adversely impacting the ETKF ensemble spread.  The spread 
was unaffected because the inflation factor compensated for the variations in the initial 
spread estimate and the final spread estimate properly attained the target. 
 
The R(  ) experiments also showed that reducing the number of ETKF observations 
improved the WG07 analysis and forecast RMSE.  Based on the forecast RMSE, the 
optimal number of ETKF observations ranged between 7,500 and 2,500 depending on the 
meteorological variable.  We suspect that reducing the number of ETKF observations 
improved the forecast RMSE for the following reason.  The ETKF has a disparity 
between the ensemble size and the number of ETKF observations.  Due to that disparity, 
the initial ETKF estimate of the ensemble spread is unrepresentative.  The inflation factor 
attempts to correct for that unrepresentativeness.  If the initial estimate of the spread is 
too low, then reducing the number of ETKF observations elevates that initial estimate 
putting it closer to the correct spread before inflation.  Since the horizontal structures of 
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the different initial estimates are different, the inflation factor cannot make this type of 
correction without localization.  We also suspect that these results are application 
dependent.  They would likely vary if the resolution were increased.  Also, they would 
likely vary if the types of ETKF observations were changed.  If separate inflation factors 
were used for each meteorological variable, we interpret these results as indicating that 
the optimal number of ETKF observations would be different for wind (u,v), T, and q.  
That suggests that the ETKF and inflation factor should be applied separately to each 
variable.   
 
Finally, we preformed spread verification on the WG03, WG07, BW08, and TRNK 
inflation schemes and found: (i) for vertical profiles of background forecast error and 
ETKF ensemble spread, the results from all inflation algorithms resembled the results 
from Wang et al. 2008a, b, (ii) TRNK’s final inflation factor averaging caused the ETKF 
ensemble spread to systematically under-predict the background forecast errors i.e., the 
inflation algorithm systematically underestimated the ensemble spread, and (iii) WG03, 
WG07, and BW08 were able to distinguish between large and small background forecast 
errors so their associated ensemble spread properly predicted the background forecast 
errors. 
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