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1. Introduction 
 
Recently, there has been much interest in hybrid variational data assimilation research.  
See e.g., Wang 2010, Bowler et al. 2008, and Wang et al. 2008a, b.  This paper continues 
that research by extending the work of Wang et al. 2008a, b to a regional version of the 
NOAA Gridpoint Statistical Interpolation (GSI) global hybrid assimilation scheme 
described by Wang 2010.  For this research, the NOAA Environmental Modeling Center 
(EMC), in collaboration with the University of Oklahoma, developed the GSI global 
hybrid code.  We modified that code to incorporate an ETKF interface and apply the 
GSI/ETKF hybrid in a regional setting with WRF-ARW. 
 
2. The GSI/ETKF hybrid scheme 
 
The GSI/ETKF regional hybrid cycling algorithm follows that of Wang et al. 2007.  We 
start with an ensemble of background forecasts.  The assimilation cycle begins by 
calculating the ensemble mean and perturbations.  It proceeds by updating the mean with 
the GSI/ETKF regional hybrid and updating the perturbations with the ETKF.  The 
mathematical formalism is identical to that of Wang et al. 2008a.  The ETKF uses the 
method described by Bishop et al. 2001 with the inflation factor strategy described by 
Wang et al. 2007.  For the ETKF, we use an averaging period of 10 days. 
 
After updating the ensemble mean and perturbations, we reconstitute the total fields for 
each ensemble member, update the boundary conditions, and use WRF/ARW to make 
12-hr forecasts for each ensemble member.  Those forecasts become the background 
forecasts for the next cycle, and the assimilation process is repeated.  
 
For a more detailed discussion of the GSI/ETKF regional hybrid and the experimental 
design underlying the work reported here, see Mizzi et al. 2011. 
 
3. The ETKF  
 
In the GSI/ETKF regional hybrid, the ETKF creates ensemble spread to represent the 
forecast distribution resulting from observation uncertainty with the goal of increasing 
the ensemble mean forecast accuracy.  However, the disparity between the ensemble size 
(relatively small) and the number of observations entering the ETKF (relatively large) 
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causes the ETKF to misrepresent the ensemble spread.2  Inflation factors are commonly 
used to account for that disparity and correct the estimate of the ensemble spread.  In this 
paper, we study the Wang et al. 2007 inflation factor algorithm. 
 
The efficacy of the Wang et al. 2007 inflation algorithm depends on the correlation 
between the innovations and the observation errors.  If positively correlated, the inflation 
scheme works properly.  Otherwise, it is problematic because the contribution from terms 
involving the ratio of relatively small innovations and large observation errors can make 
the inflation factor negative.  That problem is sometimes addressed by excluding ETKF 
observations with unreasonably large error estimates. 
 
In this paper, we investigate the sensitivity of the analysis and forecast root mean square 
error (RMSE), calculated against all radiosonde and synoptic surface observations that 
pass the WRFDA quality control procedure based on the non-ensemble GSI background 
forecasts, to changes in the error characteristics of the ETKF observations.  Specifically, 
we study the effect of truncating the lower end of the error distribution by neglecting 
observations that have relative errors falling below the specified cutoff.  We define 
relative error as the observation error divided by the observation.  For reasons discussed 
in the previous paragraph, the upper end of the distribution is truncated at maximum 
relative observation error of 20.  Our experiments showed that small variations in the 
maximum error bound did not substantially change the error distribution, but we have not 
formally investigated that issue. 
 
4. Effect of reducing the number of ETKF observations on the RMSE 
 
In the ETKF, as in the Kalman filter, the resulting ensemble spread increases as the 
number of ETKF observations decreases.  If the ETKF produced the optimal spread for a 
given number of ETKF observations, one would expect that decreasing the number of 
ETKF observations would degrade the analysis and the associated forecast.  However, 
due to the disparity between the ensemble size and the number of ETKF observations, the 
ETKF does not produce the optimal spread, and one might expect a reduction in the 
number of ETKF observations to enhance the analysis and forecast. 
  
Figure 1 displays the inflation factor time series for experiments that held the number of 
ETKF observations constant between cycles.  The control experiment is identified as 
WG07 and used the Wang et al. 2007 inflation algorithm with ETKF observations made 
up of all radiosonde wind, temperature, and moisture observations.  WG07 used 20 
ensemble members, a variational/ensemble increment weighting, ß=0.5, a horizontal 
localization, H=1,500 km, a vertical localization, V=20 grid points 20, and a cycling 
period of 10 days starting on August 15, 2007.  See Mizzi et al. 2011.  In Figure 1, R2.5 
denotes the use of 2,500 randomly selected ETKF observations per cycle, R5.0 denotes 
5,000, R7.5 denotes 7,500, and R10 denotes 10,000. The R( ) experiments selected their 
ETKF observations from the WG07 ETKF observations at each cycle.  Otherwise, the 
R(  ) experiments were identical to WG07.  
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Figure 1.  Inflation factor time series for the R2.5, R5.0, R7.5, R10., and WG07 
experiments. 
 
Figure 1 shows that WG07 had a bi-cycle oscillation in the inflation factor due to 
variations in the number of ETKF observations at each cycle.  Experiments R2.5 through 
R10 show that the oscillation disappeared when the number of ETKF observations was 
held constant.  As the relative error cutoff increased, the inflation factor decreased 
because the initial ensemble spread increased as the number of ETKF observations 
decreased due to increasing the minimum error cutoff. 
 
The bi-cycle oscillation is also present in ensemble spread time series.  See WG07 in 
Figure 2.  Figure 2 displays the ETKF ensemble spread for WG07 and the R( ) 
experiments.  Figure 2 shows that for WG07: (i) at 00 Z the ETKF ensemble spread was 
large, when the number of ETKF observations was small O(15,000) (observation number 
not shown) and (ii) at 12 Z, the ETKF ensemble spread was small, when the number of 
ETKF observations was large O(17,000) (observation number not shown).  However, 
when the number of ETKF observations was held constant, as in R2.5 through R10, 
Figure 2 shows that the oscillation disappeared and the inflation factor maintained the 
target ensemble spread. 
 
 
 
 
 
 
 
 
 
Figure 2.  Ensemble spread time series for the R2.5, R5.0, R7.5, R10, and WG07 
experiments. 
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Table 1 displays the analysis and forecast RMSE from WG07 and the R( ) experiments.  
The yellow shading identifies the configuration with the lowest forecast RMSE for each 
meteorological variable.  Table 1 shows that reducing the number of ETKF observations 
improved the analysis and forecast RMSEs, and that the optimal number of ETKF 
observations ranged between 2,500 and 7,500 and depending on the meteorological 
variable.  However between experiments, the RMSE changes were small and may not be 
significant.  We compared those changes with RMSE changes obtained by increasing the 
ensemble size from 20 to 80 in increments of 20 (not shown) and found that the changes  
 

UPR R 2.5 R 5.0 R 7.5 R 10. WG07 
u (m/s) 3.234 

(2.323) 
3.232 

(2.326) 
3.230 

(2.325) 
3.240 

(2.324) 
3.232 

(2.327) 
v (m/s) 3.250 

(2.363) 
3.249 

(2.364) 
3.251 

(2.365) 
3.254 

(2.362) 
3.257 

(2.369) 
T (K) 1.487 

(1.210) 
1.484 

(1.208) 
1.485 

(1.207) 
1.485 

(1.214) 
1.491 

(1.211) 
q (g/kg) 1.297 

(0.867) 
1.298 

(0.872) 
1.299 

(0.866) 
1.302 

(0.869) 
1.305 

(0.870)  
 

Table 1.  RMSE for the ETKF observation reduction experiments for non-surface 
meteorological variables. The forecast RMSE is outside the parentheses, and the analysis 
RMSE is inside the parentheses.  The yellow shading identifies the lowest forecast RMSE 
for each meteorological variable. 
 
in Table 1 were comparable.  Similarly, we compared the RMSE magnitudes and changes 
in Table 1 to those in Table 2 from Wang et al. 2008b and found that they were 
comparable.  Thus, we conclude that the results in Table 1 are meaningful. 
 
5. Effect of relative observation error filtering of ETKF observations on RMSE 
 
The purpose of this section to investigate whether changing the characteristics of the 
observation error distribution can improve the analysis and forecast RMSE.  Since the 
goal of the ETKF is to create spread to account for observation uncertainty, and the 
ETKF misrepresents the spread due to the disparity between the ensemble size and the 
number of ETKF observations, one might improve the RMSE by retaining observations 
with relatively large observation errors and excluding those with small errors (assuming 
that the ETKF underestimates the ensemble spread).  Thus, we experiment with varying 
the minimum relative error cutoff from 0.001 to 1.0 and hold the maximum relative error 
cutoff constant at 20 (for reasons discussed earlier).  We identify the experiment with a 
minimum relative error cutoff of 0.001 as Ep001, 0.01 as Ep01, 0.1 as Ep1and 1.0 as 
E1p.  Our experiments showed that setting the minimum cutoff to 2.0 or greater included 
too few observations in the ETKF. 
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UPR E1p Ep1  Ep01 Ep001 WG07 

u (m/s) 3.225 
(2.323) 

3.222 
(2.323) 

3.221 
(2.320) 

3.232 
(2.322) 

3.232 
(2.327) 

v (m/s) 3.268 
(2.375) 

3.252 
(2.370) 

3.246 
(2.365) 

3.253 
(2.368) 

3.257 
(2.369) 

T (K) 1.477 
(1.200) 

1.478 
(1.205) 

1.476 
(1.202) 

1.489 
(1.209) 

1.491 
(1.211) 

q (g/kg) 1.307 
(0.868) 

1.302 
(0.866) 

1.300 
(0.869) 

1.303 
(0.867) 

1.305 
(0.870)  

 
Table 2.  RMSE for the minimum relative observation error cutoff experiments for non-
surface meteorological variables.  The forecast RMSE is outside the parentheses, and the 
analysis RMSE is inside the parentheses.  The yellow shading identifies the lowest 
forecast RMSE for each meteorological variable. 
 
Table 2 displays the analysis and forecast RMSE for the minimum relative observation 
error cutoff experiments.  The results show that the optimal relative error cutoff was 0.01.  
The results from Table 1 suggest that the improvements in Table 2 may be due to 
reducing the number of ETKF observations.  However, comparison of RMSE between 
the two tables shows that Table 2 has lower values for u and v.  That suggests that some 
of the improvement in Table 2 is due to changing the characteristics of the observation 
error distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Inflation factor time series for the ensemble/non-hybrid GSI (B1.0), WG07, 
and selected E(  ) experiments. 
 
6. Effect of minimum relative observation error filtering the ETKF 

observations on inflation, spread, and spread verification 
 
In this section, we examine the effect of observation error filtering on the inflation 
factors, ensemble spread, and spread verification.   Figure 3 shows the effect of filtering 
on the inflation factors.  For all filtering experiments, the inflation factors were smaller 
than the ensemble/non-hybrid GSI (denoted as B1.0 in Figure 3) and WG07 experiments 
because the initial ensemble spread decreased as the error cutoff increased. 
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Figure 4.  ETKF ensemble spread time series for WG07 and selected E(  ) experiments. 
 
Figure 4 shows the ETKF ensemble spread time series for the error filtering experiments.  
It shows that as the relative error cutoff increased the ensemble spread decreased.  That 
results is counterintuitive.  We suspect that the smaller ensemble spread occured because 
the inflation factor scheme was unable to maintain the target spread due to averaging and 
the over/under inflation issue identified by Bowler et al. 2008. 
 
The surprising result from Figure 4 is that the RMSEs in Table 2 improved while the 
ensemble spread decreased.  That suggests that the mechanisms underlying the 
improvements in Tables 1 and 2 are different.  Figure 2 shows that reducing the number 
of ETKF observation had negligible effect on the ensemble spread, while Figure 4 shows 
that observation error filtering reduced the spread.  Thus, the improvements in Table 1 
are likely because: (i) the over/under inflation issue was resolved and (ii) the disparity 
between the ensemble size and the number of observations was reduced.  The cause of 
the improvements in Table 2 is likely more complex.  We speculate that those 
improvements occur because the final spread is more closely related to background 
forecast error at the observation locations where the observation uncertainty is greater.  If 
that is correct, then we might expect error filtering to improve the coincidence of the 
background forecast error and the ETKF ensemble spread. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Vertical profiles of the background forecast error (denoted INNO) and the 
ETKF ensemble spread (dented SPRD) for WG07 and selected E(  ) experiments. The 
background forecast error is defined as the RMS innovation minus the observation error. 
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Figure 5 displays vertical profiles of the background forecast error (denoted INNO),  
defined as the RMS innovation minus the observation error, and the ETKF ensemble 
spread (denoted SPRD) for u and v from the observation error filtering experiments.  
Profiles of T and q are not shown because the error filtering excluded all T and q 
observation points.  Figure 5 shows that in the lower and middle troposphere the gaps 
between the INNO and SPRD profiles for Ep1 and E1p are comparable to that for that for 
WG07.  However, in the upper troposphere, the various experiments have different gaps.  
WG07 has a gap of ~1 m/s at 350 hPa, Ep1 has a gap of ~0.6 ms, and E1p has a gap of 
~0.3 m/s for u and ~0.1 m/s for v.  In summary, as the minimum observation error cutoff 
increased, the gap between the INNO and SPRD profiles decreased.  Those results 
suggest that observation error filtering improved the predictive relationship between the 
ETKF ensemble spread and the background forecast error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Plots of the background forecast error as a function of ETKF ensemble spread 
for WG07 and selected R(  ) experiments. 
 
Next we look at the effect of error filtering on the ability of the ETKF ensemble spread to 
distinguish between large and small background forecast errors.  We use the method of 
Majumdar et al. 2001, as applied by Wang et al. 2008a and Wang et al. 2007.  We 
collected u innovation and ensemble spread data from the observation locations at 
500 hPa and processed that data according to the procedure of Wang et al. 2008a. We 
used 15 bins, and the numbers of points per bin were as follows: 130 for WG07, 90 for 
Ep01, 85 for Ep1, and 8 for E1p.  Ideally, the plotted points should fall along the 45º line. 
The results are displayed in Figure 6. 
 

Ep01 Ep1 

E1p WANG 
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Figure 6 shows that for all experiments the adjusted innovation/ensemble spread pairs fall 
along the 45º line, and that the results from the R(  ) experiments generally agree with 
those from WG07.  The results for E1p display greater variability about the 45º line 
because the number of points per bin is too small to get representative results.  Figure 6 
suggests that error filtering did not negatively impact the ability of the ETKF ensemble 
spread to distinguish between large and small background errors.  
 
Finally, we examine the RMSE and bias from verification of the observation error 
filtering experiments.  The RMSEs are displayed in Figure 7, and the biases are in 
Figure 8.  Figure 7 shows that error filtering had no material effect on RMSE.  Figure 8 
shows that there was: (i) a reduction in the forecast bias for u in the upper troposphere, 
(ii) a reduction in the forecast bias for T in the middle and upper troposphere, and 
(iii) a reduction in the forecast bias for q in the middle and lower troposphere.  For v, 
there was a small increase in the forecast bias throughout the troposphere.   The changes 
to the analysis bias were similar but quantitatively smaller. 
 
7. Discussion and conclusions 
 
In this paper, we studied the effects of changing the ETKF observation error 
characteristics in the GSI/ETKF regional hybrid on the analysis and forecast RMSE.  As 
part of that study, we investigated the effects of: (i) reducing the number of ETKF 
observations and (ii) holding the number of ETKF observations constant between cycles.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Vertical profiles of the RMSE for WG07 and selected E(  ) experiments.  The 
analysis RMSEs are identified with OMA and the forecast RMSEs with OMF. 
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Our results showed that reducing the number of ETKF observations improved the 
analysis and forecast RMSE.  We found that the optimal number of ETKF observation 
ranged between 2,500 and 7,500 depending on the meteorological variable.  We found 
that the ETKF ensemble spread was not affected by changing the number of ETKF 
observations because the inflation factor scheme compensated for the spread reduction 
associated with reducing the number of ETKF observations.  We speculate that the 
optimal number of ETKF observations is application dependent.  Here we used a coarse 
domain, limited the ETKF observations to radiosonde u, v, T, and q data, and used a 
single inflation factor for all meteorological variables.  If the resolution were changed, 
the optimal number of ETKF observations would likely change.  If the types of ETKF 
observations were changed, for example by including all conventional observations, then 
the optimal number of observations would likely be dependent on the error characteristics 
of the different observation platforms.  If separate inflation factors were used for each 
meteorological variable, we interpret our results as indicating that the optimal number of 
ETKF observations would be different for wind (u,v), T, and q.  That suggests that the 
ETKF and inflation factor should be applied separately to each variable. 
 
Our results showed that: (i) the bi-cycle oscillation in the inflation factor and ensemble 
spread was due to variations in the number of ETKF observations at the different cycle 
times and (ii) holding the number of ETKF observations constant between cycles 
eliminated those oscillations.  We speculate that the inflation factor was unable to correct 
the oscillations in WG07 due to the averaging, see Wang et al. 2007 and due to the 
over/under inflation identified by Bowler et al. 2008.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Vertical profiles of the bias for WG07 and selected E(  ) experiments.  The 
analysis biases are identified with OMA and the forecast biases with OMF 
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When the number of ETKF observations was held constant between cycles, the inflation 
factor scheme properly maintained the target ensemble spread from one cycle to the next 
even when the number of observations was reduced from one experiment to another. 
 
Our results showed that changing the characteristics of the observation error distribution 
by using a minimum relative observation cutoff, which altered the mean, variance, and 
skewness of the distribution, had a beneficial effect on the analysis and forecast RMSE.  
We found that the optimal minimum relative error cutoff was 0.01.  That result is likely 
to be application dependent.  We found that the RMSE improved when the minimum 
relative error cutoff was increased and the ensemble spread decreased.  That result is 
counterintuitive.  For the relative error filtering experiments, we suspect that the 
ensemble spread decreased because the inflation factor scheme could not maintain the 
target spread due to averaging and the over/under inflation issue.  We recommend 
rerunning those experiments with the number of ETKF observation held constant. 
 
We speculate that the improvements from holding the number of ETKF observation 
constant occurred because: (i) the over/under inflation issue was resolved and (ii) the 
disparity between the ensemble size and the number of ETKF observations was reduced.  
The improvements from increasing the minimum relative observation cutoff were likely 
because filtering more closely related the background forecast error and ensemble spread 
at locations where the observation uncertainty was greater.  That explanation is supported 
by vertical profiles of background forecast error and ensemble spread which showed that 
error filtering reduced the gap between those profiles in the upper troposphere (where the 
has been characteristically large) without negatively impacting the ability of the ensemble 
spread to distinguish between large and small background forecast errors. 
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