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1. Introduction 

 

In recent years, wind energy production has 

undergone rapid growth, and the U.S. Department of 

Energy goal of having 20% of the nation’s electrical 

energy from wind by 2030 will require continued 

growth. Wind, unlike other sources of energy, varies 

substantially over both space and time. Therefore, the 

production rates of wind energy fluctuate more 

strongly than other traditional fossil fuel sources of 

energy generation. To optimize wind for power 

generation, accurate forecasts are needed. 

 

Unfortunately, there have been very few 

evaluations of model forecasts of winds at 80m, a 

height where the influence of friction from the earth’s 

surface can vary greatly depending on the time of day, 

season, and vertical temperature stratification of the 

atmosphere. Meteorologists traditionally have focused 

wind forecasts at the 10m level, a height at which 

official wind observations are taken and a level at 

which winds are strongly influenced by surface 

friction. Prior wind forecasting research in the western 

United States has focused on flow in complex terrain 

like mountains (Wood 2000) and is therefore not 

applicable in Iowa where boundary layer stratification, 

low-level jets, and changing surface conditions are 

likely to be the dominant factors providing uncertainty 

in short-term forecasts at 80m. Other modeling studies 

have taken a more statistical approach to predict wind 

speed at different levels (Huang et al. 1996); however, 

none have been done over the state of Iowa. 
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In this study, the ability of the Weather 

Research and Forecasting (WRF) model to accurately 

reproduce the 80m wind speed was evaluated by 

comparing WRF simulations using six different 

planetary boundary layer (PBL) schemes to 

observations of 80m wind speed gathered at the 

Pomeroy, Iowa wind farm site.   

 

2. Data and Methodology 

 

The WRF model with 10-km horizontal 

resolution and domain compromising much of the 

Great Plains was used to explore improvements in 

wind speed forecasts at hub height (80m).  The 

following PBL shemes were evaluated:  the Yonsei 

University scheme (YSU), the Mellor-Yamada-Janjic 

scheme (MYJ), the quasi-normal scale elimination 

PBL scheme (QNSE), the Mellor-Yamada Nakanishi 

and Niino level 2.5 PBL scheme (MYNN 2.5), the 

Mellor-Yamada Nakanishi and Niino level 3.0 PBL 

scheme (MYNN 3.0), and the Pleim PBL scheme (also 

called the asymmetric convective model [ACM2]). The 

model configurations above were run using both the 

Global Forecast System (GFS) and North American 

Model (NAM) analyses for initial and lateral boundary 

conditions.  Observed data was taken from a 80m 

meteorological tower on the southwest side of the 

Pomeroy, Iowa wind farm. 

 

Prior research has shown that the ensemble 

mean forecast is almost always more accurate than any 

single member forecast (Arribas et al. 2005, Bowler et 

al. 2008). We tested this assumption by comparing 

both the ensemble mean and individual PBL scheme 

performance to the actual observations of the wind 

speed over the wind farm. Because at any one time a 
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PBL forecast model can either under-predict or over-

predict the observed wind speed, mean absolute error 

(MAE) was used to compare the different PBL 

schemes and the ensemble average.  When computing 

MAE, lower values indicate better skill.  Model and 

ensemble biases were also analyzed. 

 

3. Results 

 

a.)  Pre-Processing 

 

Little model spread was present among all six 

PBL schemes at the same initialization time.  With 

small model spread, the models either predicted the 

wind speed correctly, or the models were all wrong.  

Therefore, two pre-processing techniques were 

investigated to improve model scheme spread and skill 

over 10 cases during January 2010. 

  

The first attempt to improve model skill 

involved using different perturbations of the initial and 

lateral boundary conditions for the GFS model.  Three 

perturbations were picked at random and run for 10 

cases in January 2010 using the YSU and MYNN 3.0 

PBL schemes.  The results of this trial increased model 

spread; however, model skill was decreased (Table 1). 

 

The second attempt to improve model skill 

involved changing the time initialization.  PBL 

schemes were initialized at 18Z, 00Z, and 06Z over a 

10-day period in January to determine skill.  Again, the 

YSU and MYNN 3.0 PBL schemes were used for this 

test.  The 00Z and 18Z time initializations showed the 

best skill while the 06Z initialization, the initialization 

closest to the forecast period, showed the lowest model 

skill (Table 2).  Because the time initialization results 

showed approximately the same model spread as seen 

in the perturbation cases, it was determined that the 

best ensemble would be made up of both different PBL 

schemes and 00Z and 18Z time initializations. 

 

 

 

 

 

 

 

 

 

 

 

Table 1:  MAE from three different GFS perturbations 

using the YSU and MYNN3.0 PBL schemes.  The two 

member ensemble average is also listed. 

 

 

 

Table 2:  MAE from three different initialization times. 

 

 

b.)  Post-Processing 

 

 After investigating the pre-processing 

techniques, we investigated three post-processing 

techniques which included training the model, the 

neighborhood approach, and bias correction of the 

wind speed. 

  

 The first post-processing technique involved 

improving day 2 forecasts (hours 30-54) by training the 

model.  In this method, day 1 forecasts (hours 6-30) 

were analyzed.  Based on these results, the three most 

accurate PBL schemes (lowest MAE) were chosen and 

a Picked ensemble was developed to forecast day 2 

wind speeds.  The three least accurate PBL schemes 

(highest MAE) made up the Non-Picked ensemble 

(Table 3).  Results of this technique show that the most 

accurate day 1 forecasts do not give the most accurate 

day 2 forecasts.  From this 15 member case study, the 

Non-Picked ensemble showed the highest skill 4 out of 

the 15 times (27%), the Picked ensemble showed the 

highest skill 5 out of the 15 times (33%), and the 

ensemble, incorporating all six model members, 

showed the highest skill 6 out of the 15 times (40%).  

Therefore, the training approach is not a reliable 

method to predict wind speed as conditions change 

from day to day. 

  
 

 

Perturbation 

Number 

MYNN 3.0 

MAE  (m/s) 

YSU MAE 

(m/s) 

Ensemble 

MAE (m/s) 

2 2.34 2.06 2.05 

4 2.18 2.04 1.98 

15 2.27 2.18 2.08 

Time Initialization 
MYNN 3.0 

MAE  (m/s) 

YSU MAE 

(m/s) 

Ensemble 

MAE (m/s) 

18Z 1.88 1.78 1.69 

00Z 1.82 1.74 1.63 

06Z 1.83 2.07 1.73 



   

Model Number Day 1 MAE Times Picked 

00Z MYJ GFS with a 

10km grid spacing 
2.51 5 

00Z MYJ NAM with 

a 10km grid spacing 
2.61 6 

00Z Pleim NAM with 

a 10km grid spacing 
2.58 4 

00Z Pleim GFS with 

a 10km grid spacing 
2.36 9 

00Z YSU NAM with 

a 10km grid spacing 
2.32 11 

00Z YSU GFS with a 

10km grid spacing 
2.37 10 

Ensemble Mean 1.97 
 

 

Day 2 Picked 

ensemble best MAE 

Day 2 Non-Picked 

ensemble best 

MAE 

Day 2 All Member 

Ensemble best 

MAE 

5/15 4/15 6/15 

Table 3: MAE calculated for the first 24 hour period.  

The three PBL schemes with the greatest skill were 

chosen, making up the Day 2 Picked ensemble.  Times 

Picked indicates the number of times a model is chosen 

as a member of the Day 2 ensemble.  Non-picked 

ensemble incorporates least accurate model for the first 

24 hour period.  Day 2 All Member Ensemble 

incorporates all six model members. 
 

      

The second post-processing technique 

improved forecasts using the neighborhood approach.  

In most forecast models, the forecast is taken from the 

grid point closest to the location.  However, in the 

neighborhood approach, the grid points around the 

location of interest are averaged, an approach used 

successfully for precipitation.  The results of this test 

showed opposite results for different PBL schemes.  

The YSU scheme became more accurate with larger 

grid spacing while the MYNN 3.0 scheme became less 

accurate.  Ensemble results from this approach show 

better model skill when an average was taken from a 

box consisting of 5 by 5 grid points, as model skill did 

not improve after this point (Table 4).  However, the 

improvement is very small and not as large as that 

occurring from other methods. 

 

 

 

 

 

Table 4:  MAE associated with the neighborhood 

approach.   

 

 

 The third post-processing technique improved 

forecasts based on biases observed in the PBL 

schemes.  A bias in the model was computed by 

analyzing 30 random cases from all seasons between 

June 2008 and June 2009 (Figure 1).  In all PBL 

schemes except the YSU, a diurnal pattern or cycle 

exists. We noticed that a negative bias, or under-

prediction of the wind speed, occurs from hour 12 to 

hour 20 or from 6 a.m. to 2 p.m. Central Standard Time 

(CST), while a positive bias (over-prediction) occurs 

from hour 20 to hour 12 or from 2 p.m. to 6 a.m. CST.  

The same pattern exists in day 2 of the 54 hour forecast 

and was present in both the GFS and NAM 

initializations.  Therefore, knowing that some models 

have inherent errors based on the diurnal cycle, we can 

develop a bias correction to improve forecasts.   

 

 To understand if any larger biases existed in 

the PBL schemes, four possible biases were examined; 

the diurnal cycle, wind speed along with direction, 

wind speed only, and wind direction only.  A bias 

correction for each PBL scheme, 00Z and 18Z time 

initialization, and the GFS and NAM initial boundary 

conditions was done over a one month period from 

Oct. 11, 2009 to Nov. 11, 2009.  The GFS 00Z bias 

correction table is shown below (Table 4.).   

 

 

 

 

 

 

 

Grid Averaging 
MYNN 3.0 

MAE  (m/s) 

YSU MAE 

(m/s) 

Ensemble 

MAE (m/s) 

Point 1.82 1.74 1.63 

3x3 1.82 1.72 1.61 

5x5 1.82 1.70 1.59 

11x11 1.83 1.64 1.59 

17x17 1.84 1.62 1.59 

21x21 1.85 1.61 1.59 



   

 
Figure 1: Composites of PBL biases by hour.  Each line represents a different PBL scheme.  Notice a diurnal bias 

feature present in the PBL schemes. 

  
 

 
Bias 

Corrections 
MYJ (m/s) 

MYNN 2.5 

(m/s) 

MYNN 3.0 

(m/s) 
Pleim (m/s) QNSE (m/s) YSU (m/s) 

Ensemble 

(m/s) 

No Bias 2.34 2.49 2.41 2.36 2.45 2.28 2.27 

Diurnal Cycle 2.29 2.33 2.28 2.27 2.30 2.21 2.18 

Wind Direction 2.27 2.27 2.26 2.29 2.28 2.24 2.17 

Wind Speed and 
Direction 

2.15 2.16 2.14 2.17 2.17 2.10 2.05 

Wind Speed 2.05 2.04 2.01 2.09 2.07 1.99 1.97 

Best 

Improvement 

.29 m/s –  

Wind Speed 

.45 m/s –      

Wind Speed 

.40 m/s –      

Wind Speed 

.27 m/s –      

Wind Speed 

.38 m/s –       

Wind Speed 

.29 m/s – 

Wind Speed 

.30 m/s –      

Wind Speed 

% of 

Improvement 
14.1% 22.1% 20.0% 13.0% 18.4% 14.6% 15.2% 

 
Table 4 - MAE associated with different bias corrections developed for each PBL scheme for both 00Z and 18Z 

initialization times. This example is from the 00Z GFS run. The best improvement was seen with the wind speed 

bias correction. This case study was done from Oct. 11, 2009 to Nov. 11, 2009. 

 

 

Based on the results from the bias corrections, a six 

member ensemble was created from the most 

accurate schemes using the wind speed bias 

correction.  The six members found to have the most 

skill after the wind speed bias correction included 

18Z Pleim GFS with a 10km grid spacing, 18Z 

Pleim NAM with a 10km grid spacing, 00Z Pleim 

GFS with a 10km grid spacing, 00Z YSU NAM with 



   

a 10km grid spacing, 00Z YSU GFS with a 10km 

grid spacing, and 00Z MYJ GFS with a 10km grid 

spacing.  From these six members, an ensemble was 

created called “operational model”.  For comparison 

purposes, a deterministic forecast (a single PBL 

scheme that showed the best model skill) was 

compared against the other ensembles.  The standard 

deviation was also calculated to determine model 

spread.  To test the operational model ensemble, 25 

random cases from the summer and fall of 2010 

were used.  Results showed that the six member 

operational model had the best model skill (lowest 

MAE) of any of the other six member ensembles 

tested, both before and after the wind speed bias 

correction (Table 5).  The standard deviation of the 

operational model is also larger than that of any of 

the other ensembles, indicating a larger spread in the 

operational model which should be helpful in 

capturing outlier events.    

 

Table 5: MAE of operation model ensemble after 

wind speed bias correction compared to other six 

member ensembles tested for 25 cases during the 

summer and fall of 2010.  The deterministic forecast 

is the best individual model found from the period 

studied.  Standard deviation (measure of model 

spread) for each ensemble is also calculated.   

 

5. Summary and Conclusions 

 

Understanding the biases and strengths of different 

PBL schemes will help to improve wind speed 

forecasts.  From this study, we discovered that 

combinations of pre and post-processing techniques 

are required to improve wind speed forecasts at 80m.  

During pre-processing, it was found that 

perturbations of the GFS model give more spread in 

data than achieved with the six PBL schemes; 

however, a higher MAE is also created.  Also, GFS 

initial and lateral boundary conditions showed 

higher model skill than the NAM.  However, the 

most important discovery during the pre-processing 

stage was that different time initializations give 

equal spread, but better model skill. 

 

During the post-processing stage, the first technique 

attempted was training the model based on day 1 

results.  It was found that using the training method 

to predict wind speed is not reliable as conditions 

change from day to day.  The second technique 

attempted was the neighborhood approach, which 

increased the accuracy of the models, albeit just 

slightly.  The post-processing technique that was the 

most successful was the bias correction.  Many 

different bias corrections were tested however, the 

wind speed bias correction proved to yield the best 

results.  From these results, a six member 

operational model ensemble was developed that 

outperformed other ensembles tested. 
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Ensemble 
MAE after Bias 

Correction (m/s) 

Standard 

Deviation after 

Correction (m/s) 

MAE Prior to 

Bias Correction 

(m/s) 

GFS 00Z 1.67 1.99 0.74 

GFS 18Z 1.66 2.05 0.80 

NAM 00Z 1.68 1.91 0.67 

NAM 18Z 1.70 1.93 0.73 

Deterministic 

Forecast 
1.70 1.77 - - - 

Operational 

Model 
1.52 1.67 0.98 


