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1 Introduction

The adjoint approach to observation sensitivity has
been introduced in numerical weather prediction
(NWP) by Baker and Daley (2000) for the analysis
and design of observation targeting strategies. Sub-
sequently, advances in both theoretical aspects and
software capabilities at NWP centers have shown
that adjoint-data assimilation system (adjoint-DAS)
techniques provide effective tools for the analysis
and optimization of the DAS performance. Practical
applications include monitoring the impact of data
provided by the global observing system to reduce
short-range forecast errors, data quality diagnostics
and guidance for optimal satellite channel selection,
and adaptive observation targeting (Langland and
Baker 2004, Cardinali 2009, Baker and Langland
2009, Gelaro and Zhu 2009, Gelaro et al. 2010).

The adjoint-DAS applications may be extended
to include the forecast sensitivity to the specifica-
tion of error covariance parameters. Daescu (2008)
derived the error-covariance sensitivity equations
in a four-dimensional variational (4DVAR) DAS.
The practical ability to obtain the forecast sensi-
tivity to observation and background error covari-
ance weight parameters was illustrated by Daescu
and Todling (2010) using a simplified version of the
NASA Goddard Earth Observing System (GEOS-5)
atmospheric DAS and its adjoint developed at the
Global Modeling and Assimilation Office.

This work presents theoretical aspects of er-
ror covariance sensitivity analysis and recent re-
sults obtained with the adjoint versions of the
Naval Research Laboratory Atmospheric Variational
Data Assimilation System - Accelerated Represen-
ter (NAVDAS-AR) (Xu et al. 2005, Rosmond and
Xu 2006) and the Navy Operational Global Atmo-
spheric Prediction System (NOGAPS) (Hogan and
Rosmond 1991).
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2 Theoretical aspects

Variational data assimilation (VDA) provides an
analysis xa ∈ Rn to the true state xt of the at-
mosphere by minimizing the cost functional

J(x) = Jb + Jo

=
1
2
(x− xb)TB−1(x− xb)

+
1
2

[h(x)− y]T R−1 [h(x)− y] (1)

where xb ∈ Rn is a prior (background) state esti-
mate, y ∈ Rp is the vector of observational data,
and h is the observation operator that maps the
state into observations. Statistical information on
the background error εb = xb−xt and observational
error εo = y − h(xt) is used to specify the weight-
ing matrices B ∈ Rn×n and R ∈ Rp×p that are
representations in the DAS of the background and
observation error covariances Bt = E(εbεbT) and
Rt = E(εoεoT) respectively, where E(·) denotes the
statistical expectation operator. For a linear obser-
vational operator, h(x) = Hx, the analysis is ex-
pressed as

xa = xb + K[y −Hxb] (2)

where the gain matrix K is defined as

K =
[
B−1 + HTR−1H

]−1
HTR−1

= BHT
[
HBHT + R

]−1
(3)

In this context, Baker and Daley (2000) derived the
sensitivity equations of a scalar forecast aspect e(xa)
with respect to observations and background

∂e

∂y
= KT ∂e

∂xa
(4)

∂e

∂xb
= [I−HTKT]

∂e

∂xa
(5)

where I denotes the n×n identity matrix and KT is
the adjoint-DAS operator. In the appendix we pro-
vide a self-contained derivation of the forecast sen-
sitivity equations to the DAS input [y,R,xb,B] for



a linear analysis scheme. We refer to Daescu (2008)
for the extension to a nonlinear 4DVAR DAS and
to Trémolet (2008) for the simplifying assumptions
that are necessary to estimate the observation sensi-
tivity in an incremental VDA. The forecast B- and
R-sensitivity is expressed in terms of the xb- and
y-sensitivity respectively, as

∂e

∂B
=

∂e

∂xb
(xa − xb)TB−1 (6)

∂e

∂R
=

∂e

∂y
[h(xa)− y]TR−1 (7)

Estimation of B- and R- sensitivities associated
to a short-range forecast error measure may be used
to assess the optimality of the DAS error covari-
ance model (B,R) and to provide guidance to er-
ror covariance tuning procedures. Proper weighting
between the background information and the infor-
mation provided by uncorrelated observing system
components yi, i ∈ I, may be investigated through
a parametric specification

B(sb) = sbB, Ri(so
i ) = so

i Ri, i ∈ I (8)

which is a common representation used to perform
error covariance tuning (Desroziers et al. 2009). The
forecast sensitivity to the covariance weight factors
sb > 0, so

i > 0 is expressed in terms of the obser-
vation sensitivity and the observed-minus-analysis
residual as (Daescu and Todling 2010)

∂e(x̄a)
∂sb

= [y − h(x̄a)]T
∂e(x̄a)

∂y
(9)

∂e(x̄a)
∂so

i

= [hi(x̄a)− yi]T
∂e(x̄a)

∂yi
, i ∈ I (10)

where x̄a denotes the analysis state provided by the
reference DAS configuration (B,R) with all weight
parameters in (8) set to 1. In conjunction with the
observation sensitivity, the observed-minus-analysis
(o-m-a) information allows the identification of the
input components where improved estimates of the
error statistics have a potentially large impact on the
forecast error reduction. In particular, the steepest
descent direction

d = −∂e(x̄a)
∂s

(11)

identifies the direction of small variations δs, from
the current DAS configuration, that will be of largest
forecast benefit and provides a first order error co-
variance diagnostic.

3 Numerical results

Sensitivities derived from the adjoint of the
NAVDAS-AR analysis and the adjoint of the NO-
GAPS forecast model are used to assess the opti-
mality of the information weighting in the data as-
similation system and first order diagnostics for error
covariance tuning. The forecast score is defined as a
24-hour forecast error measure

e(xa) = (xa
f − xv

f )TE(xa
f − xv

f ) (12)

where xa
f = Mt0→tf

(xa) is the model forecast at ver-
ification time tf initiated from xa, xv

f is the verifying
analysis at tf and serves as a proxy to the true state
xt

f , and E is a diagonal matrix of weights that gives
(12) units of energy per unit mass. The adjoint-DAS
software tools developed at NRL for observation im-
pact estimation facilitate the error covariance sen-
sitivity analysis. The observation impact measure
introduced by Langland and Baker (2004)

e(xa)− e(xb) ≈ (δy)TKT

[
1
2

∂e

∂x
(xb) +

1
2

∂e

∂x
(xa)

]
(13)

is defined in terms of the innovation vector δy =
y−h(xb) and forecast gradients evaluated along the
analysis and background trajectories. The sensitivi-
ties (9) and (10) to each covariance weight factor are
defined in terms of the observation-minus-analysis
(residual) vector y−h(xa) and the forecast gradient
evaluated along the analysis trajectory. The compu-
tations that are necessary to evaluate (9), (10), and
(13) share the same adjoint tools and may be per-
formed simultaneously to obtain complementary in-
formation that is necessary to optimize the DAS per-
formance. The observation impact estimation pro-
vides an assessment of the contribution of each ob-
serving system component yi to the forecast error
reduction, given the DAS error covariance model
(B,R). The (B,R)-sensitivities provide guidance
on the variations in the error covariance parameters
that are necessary to reduce the forecast error, given
the observing system configuration y.

The observation impact (13) and sensitivities (9),
(10) are evaluated for the 24-h forecasts initiated at
every analysis time 00 UTC for the time period July
15 - August 15 of 2010 (hereafter summer period)
and for the time period September 29 - October 26
of 2010 (hereafter fall period). The summer period
incorporates 30 data sets (data for July 28 and Au-
gust 1 was not incorporated in this study) whereas
the fall period incorporates 27 data sets (data for
October 15 was not incorporated in this study).



The total amount of data at 00UTC assimilated
during each time period is displayed in Fig. 1.
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Figure 1: Total number of observations of various
types assimilated at 00UTC during the summer pe-
riod and during the fall period in NAVDAS-AR.

The fall period incorporates a significantly larger
amount of radiance data and in addition, it incorpo-
rates Global Positioning Satellite (GPS) refractiv-
ity data from atmospheric sounding instruments on
COSMIC, METOP-A (GRAS), and GRACE-A. The
contribution of each data type to the forecast error
reduction, as derived from (13), is shown in Fig. 2.
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Figure 2: Observation impact assessment for each
data type in the DAS. Daily-averaged values (J kg−1)
for the summer period and for the fall period.

A recent study on observation impact assessment
at various NWP centers is provided in the work of
Gelaro et al. (2010). We discuss the additional
adjoint-DAS ability to obtain error-covariance sen-
sitivity information and its relevance to establish
DAS diagnostics and guidance to forecast error re-
duction. By analogy with the observation impact es-
timation, the adjoint-DAS approach provides a de-
tailed error covariance sensitivity information and

allows the analysis of each observation type, instru-
ment, and data location in the time-space domain.
Daily-averaged forecast sensitivities to the observa-
tion error covariance weight factor (10) are displayed
for each observation type and for various observing
instruments in Fig. 3 and Fig. 4, respectively. For
comparison, the values of the sensitivity to the back-
ground error covariance weight (9) are also shown.
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Figure 3: Daily-averaged sensitivity (J kg−1) of the
24-h forecast error measure with respect to the back-
ground error covariance weight factor sb and to the
observation error covariance weight factor so

i asso-
ciated to each data type.
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Figure 4: Same as Fig. 3 for the observation er-
ror covariance weight factor so

i associated to various
observing instruments.

Each of the s-sensitivities ∂e/∂s provides a first
order guidance on the forecast impact as a result
of variations in the corresponding error covariance
weight coefficient. Forecast error reduction may be
obtained by taking a steepest descent update

s? = 1− α
∂e

∂s
(14)

where α > 0 is an appropriate step length. A nega-
tive sensitivity ∂e

∂si
< 0 implies s?

i > 1 and identifies



the DAS components whose error covariance infla-
tion is of potential benefit to the forecasts, whereas
a positive sensitivity ∂e

∂si
> 0 implies s?

i < 1 and
identifies the DAS components whose error covari-
ance deflation is of potential benefit to the forecasts.

A large negative sb-sensitivity is noticed in both
experiments and indicates that background error co-
variance inflation is of potential benefit to the fore-
casts (alternatively, the information provided by the
observing system as a whole is under-weighted in
the DAS). In Figs. 3 and 4 it is noticed that a
large fraction of the sensitivity to the radiosondes
error covariance weight is explained by the sensitiv-
ity associated to the relative humidity and points to
a suboptimal assimilation of this data. Additional
information is shown in Fig. 5 as daily-averaged ob-
servation impact and forecast sensitivity to the error
covariance weight for the radiosonde data between
various pressure levels during the summer period.
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Figure 5: Daily-averaged vertical distribution (hPa)
of the observation impact (J kg−1) and sensitivi-
ties to the error covariance weight (J kg−1) for ra-
diosonde data during the summer period.

The combined sensitivity analysis in Fig. 3-5 indi-
cates that tuning the observing system through a
single weight coefficient (I = 1) is suboptimal. Di-
agnostics and guidance to the parameterization (9),
(10) that is necessary to optimize the use of data may
be obtained by systematically monitoring the sensi-
tivity to error covariance parameters along with the
observation impact estimates.

Noticeable in Fig. 3 and Fig. 4 is the varia-
tion from the summer period to the fall period in
the forecast sensitivity to the error covariance weight
associated to the radiance data. Valuable insight is

obtained from a time-series analysis of each satellite
instrument that allows the identification of tenden-
cies in the forecast sensitivities to the information
weight, as illustrated in Fig. 6 for the Advanced Mi-
crowave Sounding Unit (AMSU)-A and for the In-
frared Atmospheric Sounding Interferometer (IASI).
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Figure 6: Daily sensitivities (J kg−1) of the 24-
h forecast error measure with respect to the obser-
vation error covariance weight factor so

i for IASI
and AMSU-A instruments during the summer period
(top graphic) and the fall period (bottom graphic).

Caution must be exercised in the interpreta-
tion of the sensitivity analysis for tuning DAS er-
ror covariance parameters and this information must
be considered in conjunction with other diagnostics
such as the methods of Desroziers and Ivanov (2001)
and Desroziers et al. (2005). Bormann and Bauer
(2010) and Bormann et al. (2010) implemented var-
ious diagnostics to estimate observation error statis-
tics in the ECMWF system. Their findings suggest
that observation-error estimates for sounder radi-
ances are lower than the observation errors currently
assigned in the DAS and indicate a too-conservative
use of the AMSU-A instrument. In their study it was
also found that AMSU-A shows little spatial and
interchannel error correlations and that larger in-
terchannel error correlations are present for surface-
sensitive temperature-sounding or window channels
for IASI. This is in agreement with the results in
Fig. 6 where positive sensitivities indicate that data
provided by the AMSU-A instrument appears to be
under-weighted in the DAS. In Fig. 6, negative sen-
sitivities associated to IASI suggest that further in-
flation of the assigned observation error variances for



this instrument may be of benefit to the forecasts.
Since observation error correlations are not modeled
in current data assimilation systems, the sensitiv-
ity guidance may be interpreted as an attempt to
compensate for misspecified observation error corre-
lations in the DAS through inflation of the assigned
error variances.

4 Conclusions and future work

Modeling of the observation and background error
covariances is a key ingredient in the implementation
of atmospheric data assimilation techniques and an
area of intensive research in NWP. The adjoint-DAS
approach is a routine procedure used to monitor
the observation performance on short-range fore-
casts and, for the first time in an operational DAS,
we presented the ability to obtain derivative-based
forecast sensitivities to error covariance parameters.
This information may be obtained along with the
observation impact assessment and may be used as
an additional diagnostic tool and to provide guid-
ance to error covariance tuning procedures. The
simplicity of the parametric representation (8) fa-
cilitated the analysis presented in this study based
on the data assimilation products developed on a
routine basis at NRL. Equations (6) and (7) al-
low the extension of the sensitivity analysis to key
ingredients in the error covariance modeling, the
specification of the information error standard devi-
ation and the information error correlation model,
R = ΣoCoΣo, B = ΣbCbΣb. Our future work will
investigate theoretical aspects and practical appli-
cations of these additional adjoint capabilities to
optimize the DAS performance as well as the incor-
poration of the model error covariance sensitivity
analysis in a weak-constraint 4DVAR.
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Appendix

For a linear observation operator, the cost functional
(1) may be expressed as

J(x) =
1
2

(Γx− z)T S−1 (Γx− z) (15)

where

z =
[

xb

y

]
∈ Rn+p, Γ =

[
I
H

]
∈ R(n+p)×n

(16)
denote the information vector and the information
operator respectively, and

S =
[

B 0n×p

0p×n R

]
(17)

is the DAS model of the information error covari-
ance. The first-order optimality condition to (15)

ΓTS−1 (Γxa − z) = 0 (18)

is used to express the first order analysis variation
δxa and, using chain rule differentiation, the first
order forecast variation δe in terms of perturbations
in each DAS input component 1.

Sensitivity to the information vector

The first order variation δxa associated to a pertur-
bation δz is expressed from (18) as

ΓTS−1Γδxa = ΓTS−1δz (19)

It is noticed that the Hessian matrix of the cost (15)
defines a self-adjoint (symmetric) operator on Rn

ΓTS−1Γ = B−1 + HTR−1H ∈ Rn×n (20)

Let λ ∈ Rn defined as the solution to the adjoint
problem

ΓTS−1Γλ =
∂e

∂xa
(21)

By taking the inner product of (19) with λ and using
(21) and the symmetry of the Hessian matrix (20),〈

∂e

∂xa
, δxa

〉
Rn

=
〈
λ,ΓTS−1δz

〉
Rn

=
〈
S−1Γλ, δz

〉
Rn+p (22)

The left side of (22) is the first order variation of the
functional aspect e(xa),

δe =
〈

∂e

∂xa
, δxa

〉
Rn

(23)

1For a perturbation δu in the input component u, the first order variation δxa is the differential of xa at u in the direction
δu, δxa = dxa(u)δu. Chain rule differentiation provides δe = de[xa(u)]δxa = de[xa(u)]dxa(u)δu



and from (22) and (23) the forecast sensitivity to the
information vector is expressed as

∂e

∂z
= S−1Γλ ∈ Rn+p (24)

Using matrix properties, it is noticed that (5) and
(4) are a componentwise representation to (24)

∂e

∂z
=


∂e

∂xb

∂e

∂y

 =

[
B−1λ

R−1Hλ

]
(25)

Sensitivity to the error covariance model

The first order variation δxa associated to a pertur-
bation δS is expressed from (18) as

ΓTδS−1(Γxa − z) + ΓTS−1Γδxa = 0 (26)

where
δS−1 = −S−1δSS−1 (27)

is the first order variation in the inverse of S induced
by the perturbation δS. Next, we replace (27) in (26)
and separate the terms to obtain

ΓTS−1Γδxa = ΓTS−1δSS−1(Γxa − z) (28)

Taking the inner product of (28) with λ defined as in
(21) and using the symmetry of the Hessian matrix,〈

∂e

∂xa
, δxa

〉
Rn

=
〈
λ,ΓTS−1δSS−1(Γxa − z)

〉
Rn

=
〈

∂e

∂z
, δSS−1(Γxa − z)

〉
Rn+p

(29)

Equation (24) is used to establish the last equality
in (29). The left side of (29) is the first order varia-
tion δe in the forecast aspect whereas the right side
of (29) is the Frobenius inner product on the vec-
tor space of (n + p) × (n + p)-dimensional matrices
defined in terms of the matrix trace operator Tr:

δe =
〈

∂e

∂z
, δSS−1(Γxa − z)

〉
Rn+p

= Tr

[
δSS−1(Γxa − z)

(
∂e

∂z

)T
]

=
〈

δS,
∂e

∂z
(Γxa − z)TS−1

〉
R(n+p)×(n+p)

(30)

Therefore, the forecast S-sensitivity is a rank-one
matrix that is expressed in terms of the sensitivity
to the information vector as

∂e

∂S
=

∂e

∂z
(Γxa − z)TS−1 (31)

For a linear observational operator, (31) implies (6)
and (7).
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