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1. INTRODUCTION 
 

Climatological storm information is important 
to National Weather Service (NWS) forecast 
offices where warning success is highly 
dependent on the predominant regional storm 
type (Guillot et al. 2007). Based on anticipated 
hazards, it is natural to categorize storms into 
types (supercells, squall lines, etc.) by their 
distinct characteristics. However, hand-
classification of storm types can be quite 
tedious. For this reason, investigators have 
focused on techniques to automatically identify 
storm type from weather imagery to better 
predict potentially hazardous events (Morel et al. 
2002; Rigo and Llasat 2004; Short et al. 2004; 
Baldwin et al. 2005; Guillot et al. 2007; Gagne et 
al. 2009). 

 
This study describes the development of an 

algorithm for an automated multiscale storm 
classification system. The technique allows 
radar reflectivity to be partitioned meaningfully 
storm-by-storm, instead of pixel-by-pixel.  
 
2.0 METHODOLOGY 
 

The Warning Decision Support System-
Integrated Information (WDSS-II; Lakshmanan 
et al. 2007) tool allows the capability to process, 
visualize, cluster, and classify data. In the first 
intricate step, archived WSR-88D radar data 
was manually categorized into storm types using 
WDSS-II (see Table 1). Storms were manually 
classified every hour for each case by “drawing” 
polygons around specific storms and dividing 
them into broad categories, “supercells,” 
“ordinary cells,” “short-lived convective cells,” 
and “convective lines.” These storms were 
considered the ideal storm types. 

 
Supercells were identified by intense radar 

reflectivities associated with a mesocyclone, as 
indicated by mid-level azimuthal shear (Doswell 
and Burgess 1993; Smith and Elmore 2004). 

Ordinary cells tended to be intense, long-lasting 
storms with no rotation (Browning 1977). Short-
lived convective cells included quick, pulse-like 
storms with moderately high reflectivity and no 
rotation. Convective lines were identified first by 
their linear appearance, then by the presence of 
an outflow boundary as indicated in the low-level 
azimuthal shear value (Doswell 2001). 
 

A WDSS-II algorithm identified all storm 
clusters (greater than 30 dBZ). Storms were 
clustered into two scales using the WDSS-II 
algorithm, which employed a k-means clustering 
and watershed segmentation approach 
(Lakshmanan et al. 2003; Wilks 2006). 
Supercells, ordinary cells, and short-lived 
convective cells were segmented at a scale of 
200-km2, while convective lines were identified 
on a scale of 2000-km2. Mean and maximum 
values of each gridded field were extracted from 
each cluster and are referred to as “attributes.” 
Example attributes are as follows: composite 
reflectivity, Maximum Estimated Hail Size 
(MESH), azimuthal shear, surface temperatures, 
and Most Unstable CAPE. A full dataset was 
collected that included thousands of clusters 
with radar and environmental attributes, as well 
as the subjectively determined storm type for all 
dates listed in Table 1.  

 
The manual classification resulted in 259 

short-lived convective cell clusters. Supercells 
were the smallest group, with 153 clusters. 
Since ordinary cells were comprised of non-
rotating storms that could be subdivided into 
smaller groups (i.e. clustered storms, multicells, 
etc), they accounted for more than half of the 
clusters (565 clusters). On the 2000-km2 scale, 
89 convective lines were classified.  

 
Five cases were used as a training dataset 

for the creation of an automated storm classifier 
system; the other five cases generated testing 
data.  



The next process employed the Waikato 
Environment for Knowledge Analysis (WEKA) 
system to create a decision tree model to predict 
storm types using the hand-classification 
dataset. The decision trees were compared to 
the True Skill Statistic (TSS). The TSS was used 
as it reduces the penalty for incorrectly classified 
low-probability events and more strongly 
penalizes incorrectly classified high-probability 
events (Wilks 2006).  

 
For the 200-km2 scale and its three 

categories of storms (supercell, ordinary cell, 
and short-lived convective cell), the TSS was 
calculated by use of a 3x3 contingency table. 
For the larger 2000-km2 scale indicating 
convective lines, the TSS was calculated using 
an ordinary 2x2 table.  

 
Using a method described in Kolodziej et al. 

(2011), decision trees with a high and consistent 
TSS were chosen for both scales (see Figures 1 
and 2). 
 
3.0 RESULTS  

 
The decision trees were automated and 

carried out over a seasonally diverse national 
dataset to obtain a preliminary climatology of 
storm types. The algorithm ran on every radar 
scan for fifteen days a month within an eleven-
month period in 2009.  
 

3.1 Regional storm type characteristics 
 

The United States was divided into 
“regions” for analysis: the Northwest, Southwest, 
Northern Plains, Southern Plains, Midwest, 
Southeast, and Northeast. Regional storm-type 
frequency was investigated (see Figure 3). 
Storm clusters were evaluated within each 
region. Short-lived convective cells were the 
most prevalent storm type within each region. 
Percentages of storm types in Figure 3 refer to 
the ratio of regional storms as compared to the 
national average. The Southern Plains was the 
leading producer of supercells and convective 
lines. The next highest supercell-producing 
regions were the Northern Plains and Southeast, 
with 17% and 12.2%, respectively. The 
Southeast provided the highest fraction of 
ordinary cells and short-lived convective cells as 
compared to the national average. The 
Southeast also produced the second-highest 
fraction of convective lines.  
 

Vertically Integrated Liquid (VIL), mid-level 
shear, low-level shear, composite reflectivity, 
Probability of Severe Hail (POSH), and 
Maximum Estimated Hail Size (MEHS or MESH) 
were also extracted from storms and compared 
within each region. 
 

Regional storms varied in individual 
characteristics, specifically VIL, MESH, POSH, 
reflectivity, low- and mid-level shear, as follows: 

Table 1 - Selected analysis dates and regions, with start time and duration. Asterisks (*) 
identify training dataset. 

 
 



 
• Storms within the Southern Plains had 

consistently higher values for each 
characteristic than the national average.  

• The Northeast tended to have lower storm 
characteristic values than the national 
average.  

• Southeast supercells were of a different 
nature from those of the Southern Plains, 
with lower VIL, reflectivity, MESH, and 
POSH than the national average, but with 
high values of low- and mid-level shear.  

• Southern U.S. VIL values tended to be 
higher than the northern United States. 

• The western U.S. had higher values of 
MESH and POSH than the eastern U.S. 

• Although variations in characteristics 
occurred in the Northwest, Southwest, and 
Midwest, the variations were not consistent 
among storm types. 

 

3.2 Seasonal storm type characteristics  
 

Each season was divided into seasonal 
subsets, where December and February are 
considered winter, March, April, and May are 
considered spring, June, July and August are 
considered summer, and September, October 
and November are autumn months. To account 
for the missing January data, a monthly average 
was determined for each season (see Table 2). 

 
Distinct seasonal variations were identified. 

A primary peak for all storm types occurred in 
summer. A secondary peak occurred in spring 
for all storm types except ordinary cells, with the 
secondary peak for ordinary cells apparent in 
autumn. Although winter produced fewer 
smaller-scale storms, it had similar numbers of 
monthly convective lines when compared to the 
other seasons. 

 
Figure 1 - Final decision tree for the 200-km 
scale. Reflectivity units are in dBZ, VIL in 
kg/m^2, temperature in Celsius, and mid-
level shear in s^-1. 

     

 
Figure 2 - Final decision tree for the 2000-
km scale. Reflectivity units are in dBZ, VIL 
in kg/m^2, temperature in Celsius, and 
mid-level shear in s^-1 

 

Table 2 - A monthly average of storm types for each season. Numbers represent "clusters" 
rather than individual storms 

 



 
4.0 CONCLUSIONS 
 

Storms were hand-classified into four storm 
categories for ten cases. WSR-88D radar 
reflectivity was partitioned into storm clusters, 
including short-lived convective cells, supercells, 
ordinary cells, and convective lines. A dataset of 
radar parameters, environmental information, 
and ideal storm types was developed from 
extracted attributes of each cluster. Decision 
tree models were generated from this dataset 
and used to create an automated storm type 
classification system.  

 
The storm type classification system was 

implemented to generate a preliminary 
climatology of storm types. The system ran on 
every radar scan within an eleven-month period 
in 2009. The algorithm clustered each storm, 
extracted its attributes, and assigned to it a 
storm type. The dataset was used to determine 
statistics for the frequencies of storm types 
within these seven regions of the U.S.  
 
4.1 Future Work 

 
The individual storm characteristics identify 

distinctions between similar storm types, as well 
as the impact of locations upon storm type. Such 

climatological information is of considerable 
importance to National Weather Service forecast 
offices, where warning success tends to be 
highly dependent on the predominant regional 
storm type (Guillot et al. 2007). These 
developments and advances improve 
technology to generate more accurate and 
detailed nowcasts of storm type and storm 
severity.  
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