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ABSTRACT. A technology for the knowledge-based detection and classification of aerospace hazards through on-board radar sensor is
discussed, the expected hazards are mainly from hydrometeor. The technology takes advantage of fully-diversified radar systems
(multiple channels, dual-polarizations and potentially multi-frequencies (S-C-X bands), and is based on a Bayesian-type, Gaussian
mixture self-learning scheme. Physical models of target scattering are incorporated into the machine-learning framework, and Monte-
Carlo sampling is used to address the large amount of random variables. The algorithms are highly adaptive and able to accommodate
different types of hazards. Simulations and ground test results are presented as initial validations.

1. INTRODUCTIONs

Sense-and-Avoid is becoming a key capability for the future operations of unmanned aero-
vehicles (UAV). Although the GPS and satellite links can provide relayed ground radar data, the
space and time resolutions are not sufficient for critical safety applications. Also, the pilots
(human or automatic) need a comprehensive picture of hazard, including both weather and
collision objects, in order to make timely and efficient decisions. Using multiple frequency bands,
different antenna polarizations and other diversities is the solution to achieve fast-scanning,
multiple functions, and deeper insight into hazard physics [1]. On the other hand, the diversities
of antenna system raise a true challenge on how to calibrate, interpret, and understand these data
intelligently. This paper assumes airborne radar with multiple receive channels and dual linear-
polarization is used as the key sensor for hazard detection, and introduces a Gaussian-mixture
based detection and classification scheme. The innovative advantages of the data processing
scheme originate from a knowledge-driven hazard signature model, which incorporate both the
physical models (EM scattering prediction) and the Bayesian probability models. Monte-Carlo
sampling is used to handle the large amount of uncertain variables. The techniques developed are
validated through realistic, mixed phased weather simulator as well as ground radar data. Overall,
an optimized balance among knowledge model complexity and the classification accuracies can
be achieved.

2. HYDROMETEOR HAZARD KNOWLEDGE BASE
2.1. The weather and physical scattering models: Monte-Carlo sampling

One well-known difficulty for aerospace hydrometeor hazards detection is the lack of knowledge
of radar signatures for different kind of hydrometeor hazards, though there are many existing
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results about hydrometeor signature and hydrometeor classification, most of which are for S-band
and C-band ground-based radars [2, 3]. There has been no satisfactory model for dual-polarized
radar signatures of hydrometeors at X-band, which is widely used by airborne weather radar. The
proposed airborne radar system also has to perform in various situations where types, shapes and
sizes of hydrometeors may vary significantly, like in summer rain environment or winter storm
environment, or in low altitude as well as high altitude, bringing more challenges to the hazard
detection system. Since real measurements from radar usually lack of ground truths and clean
data (there are more than one type of hydrometer inside a radar resolution volume), radar
signatures from simulations has been a major source of knowledge for hydrometeor classification.
A single cell Monte-Carlo sampling simulation approach had been developed for this interest.
Concept of the simulation is shown in Figure 1.

Single cell
Monte-Carlo simulation

Hydrometeors

Figure 1. Concept of Single cell Monte-Carlo simulation

Consider a single radar resolution volume (known as single cell) that is filled with hydrometeors.
The type, total number of hydrometeor and size of a particular particle are controlled by the drop
size distribution (DSD). Scattering amplitudes of each particle (hydrometeor) present in the
volume can be calculated from T-Matrix ([4]) technique by assuming it has spheroid shape.
Therefore, radar return of the whole volume is just the composite of echoes backscattered by all
hydrometeors. To make the simulation more realistic, range weighting (caused by pulse shape)
and angle weighting (caused by antenna pattern) are also incorporated. Due to limitations of
microphysical knowledge and uncertainties of hydrometeors, electromagnetic scattering models
and variables including hydrometeor shape, canting angle and drop size distribution (DSD) are
allowed to have uncertainties (randomness) to avoid assumptions and losing generality in this
study. Detailed description of this simulation and how it corporate with a numerical weather
prediction (NWP) model can be found in [5].

Frequency of the simulation is set at 9.41 GHz to match the hardware system under development,
and it can be easily changed or extended to dual-frequency applications. Outputs of the
simulation are equivalent reflectivity factor at both horizontal and vertical polarization (Z},,),
differential reflectivity (Zg,), specific differential phase (Kj,), correlation coefficients (py,) and

specific attenuation (Ap, ).



2.2 Scatter plots and statistical interpretations

By artificially setting some physical parameters, we can control the number, size, types and even
the melting behavior of the hydrometeors in the volume. For example, we can create a scenario
where there is only a certain amount of snowflakes with 20% melting and nothing else in the
volume. By generating many scenarios and computing the returns, radar signatures for all the
species at different kinds of amounts can be obtained. Since the intercept parameter of DSDs and
temperatures are both random variables within a reasonable range, different types of
precipitation can also be emulated.

In order to have a statistical significance, a set of 10,000 scenarios for each species including rain,
snow, hail, melting snow, melting hail and mixed rain and hail have been carried out. Only one
species out of the six species is generated in each scenario. In other words, simulation outputs of
each case are ‘clear’ data for that particular hydrometeor species. Scatter plots of Z,-Z . are
shown in Figure 2 as an example (More plots can be found in [5], mixed rain and hail is not shown
in this figure).

Simulated scatter plot of hydrometeor at X-Band
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Figure 2. Simulated Scatter plots of Z;-Z,,. at X-Band

3. GAUSSIAN MIXTURE MODEL

Most existing hydrometeor classification techniques are based on fuzzy logic approach, which is
flexible and easily adapted to new evidences. However, it fails to model cross correlations among
features. For example, in hydrometeor classification, it cannot utilize the underneath relations
between reflectivity (Z;,) and differential reflectivity (Z4.) from one observation. Thus, knowledge
gained from Monte-Carlo simulations are learned using Gaussian mixture model (GMM) which
has been well applied in many areas [6].

As shown in Figure 2, there are five classes of hydrometeors considered. They are rain, snow,
melting snow, hail and melting hail. Given a radar observation vector X which here includes Z,



Zar, Kap, pny, @ Bayesian classifier assigns a hydrometeor class according to its conditional
posterior probabilities p(c;|X) where i = 1, ..., 5 and ¢; is the corresponding hydrometeor class.
The classification rule, which is also known as maximum-likelihood rule, is quite intuitive, as the
hydrometeor class is obtained by the index c; that maximizes the conditional posterior probability

X € ¢; <=>p(¢|X) > p(cj|X) Vi #1i

However, conditional posterior probabilities are usually unknown. From Bayes theorem, posterior
probabilities can be calculated from prior probabilities and conditional likelihood PDF, which is

p(ci)p(X|ci)
pleix) = BRI

Z p(X)
Prior probability p(c;) is set equal here for all classes, even though they are likely different from
each other in different temperatures. (Temperature information will be included in future study,
since the airborne platform has the advantages of knowing temperature around the radar).
p(X|c;), which is the priori PDF of hydrometeor class ¢;, is approximated here using

multidimensional Gaussian Mixture Model (GMM) and trained from simulation data.

M
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M is total number of Gaussian mixtures, here we set M = 3. p$,? is the prior probability for the

th (@)

m'" mixture of class ¢;. Dy is number of dimension of input vector X, here Dy = 3. pis is a

column vector (D X 1) containing mean values and 25,? is the covariance matrix (Dgy X Dy) for
the m®" mixture of class ¢;. “T” and “—1” stand for matrix transpose and inverse, respectively.

pSfB, ,u,(f@) and B for each hydrometeor class are trained by using Expectation-Maximization (EM)
algorithm ([6]). Therefore, the classifier assigns each observation a class by maximizing the
conditional prior probability, as given in next equation.

X € ¢ <=>p(X|c) > p(X|c)) )

Figure 3 shows the GMM model for rain in Z; and Z;. dimensions. By comparing it with the
scatter plot (figure 2), we can see GMM model well presents the original distribution.



Gaussian Mixtures Model - Rain

z,[dB]
w

0 20 40 60 80
z, [dBZ]

Figure 3. Gaussian mixtures model for rain (Z;,-Zy,)

Data from simulation has been randomly divided into two parts. 80% data for training and 20%
data for testing. Table.1 lists the accuracy of this classifier. As is shown, the classifier does a good
job in distinguishing rain, snow and hail but makes some mistakes when telling if snow/hail is
melting. That is probably because no temperature information is used. It is hard to detect melting
when dual-polarized radar measurements mainly contain shape information of hydrometeor.

Rain | Snow | MeltingSnow | Hail | MeltingHail
Rain 0.9855 | 0.0075 0.005 o 0.002
Snow o 0.798 0.202 o o
MeltingSnow | 0.044 | 0.3515 0.6045 0 0
Hail o o 0.002 0.6695 0.3285
MeltingHail | o.0005 o 0.001 0.161 0.8375

Table 1. Classification accuracy of GMM model for airborne
radar system (X-band)

4. Attenuation Correction

In X-band, as wavelength is close to diameter of hydrometeors, attenuation effects cannot be
neglected. Power measurements such as Zj, Z,,. and pp,, are significantly biased and needed to be
corrected. Phase measurement, in the other hand, is not affected by attenuation. With dual
polarization capability, specific differential phase (K;,) can be measured and used to estimate

attenuation in both horizontal and vertical polarization. Scatter plots (only Rain is shown in



figure 4) show that linear relations between A, and K, can be assumed for all classes as given
in the following equation.

Ah,v = ﬁ X de

(3 values for all classes can also be learned from simulation outputs. Table 2 gives the RMSE (root
mean square error) of attenuation correction for rain, snow(dry and wet) and hail(dry and wet).
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Figure 4. Linear relations between Aj, and Ky, for rain

Rain Snow Hail
AH 0.6217 1.1082 2.7551
AV 0.6347 1.0240 2.4988

Table 2. RMSE of attenuation correction in dB km™

5. ATMOSPHERIC HAZARD DETECTION AND CLASSIFICATION

5.1 Example of onboard hail-storm detections

Detection accuracy shown in Table 1 is results for ‘clear’ data, which means only one species
existing in a radar resolution volume. However, in real weather field, there are usually more than
one species considering the huge size of one radar resolution volume. Therefore, performance of
the system needs to be inspected in simulated weather field where different species mixes with
each other. As attenuation in X-band cannot be ignored, how attenuation affects the system also
need to be examined. Since we expect the hazards detection system to detect dominant hail



species from rain or snow background, only three species including rain, snow and hail are
considered (melting hail or melting snow are considered as hail or snow, respectively).

As airplane would fly in different layers in the atmosphere, two cases generated from numerical
weather prediction model ([7-9]) are studied. Simulated radar returns includes Zj, Zg,, K4, and
Phy (Only plots of Z;, with and without attenuation are shown in Figure 5 and Figure 8) are used
as input to the hazards detection system. In case 1, A PPI scan is generated at about 11 km within
the stratosphere where only snow and hail exist. Figure 5 shows the weather field for this case. In
case two, simulated PPI scan is generated within a melting layer where weather conditions are
more complicated. Not only rain but also hail and wet melting hail exist in this layer. Figure 8
show the weather field for case 2.

In case 1, in front of the radar there is a large snow mixing hail area. Although the snow-mixing
ratio is not high, at about 15 km ahead of the airplane, there is a region with very high hail density
as shown in figure 4. In simulated PPI scans with and without attenuation (figure 6), attenuation
effects that lead to 3 to 5 dB difference in reflectivity are shown. As shown in Hazard detection
results (Figure 7), the classifier performs very well in this case. When no attenuation in radar
returns, the classifier picks up almost all the region where hailstone exists and labels out other
snow area. Results completely match the underneath weather field. Even when radar returns are
affected by attenuation, though it makes some mistakes (labels some area as rain), the classifier is
still able to identify most of the hail regions.

Mixing Ratio of Snow - gs [ka/ka] Mixing Ratio of Hail - gh [kg/kg]
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Figure 5. Weather field for case 1



Simulated Reflectivity Z [dBZ] Simulated Reflectivity Z with attenuation [dBZ]
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Figure 6. Simulated PPI scan for case 1 (with and without attenuation)
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Figure 7. Hazards detection results for case 1 (with and without attenuation)

In case 2, in front of the radar there is a large rain mixing hail area. Rain mainly locates at the left
side while hail is everywhere. Both mixing ratios of rain and hail are very high at about 15 km
ahead of the airplane as shown in figure 8. Shown in simulated PPI scans with and without
attenuation (Figure 8), reflectivity attenuates greatly after the high rain-hail density area. There is
about 20 dB difference. As shown in Hazards detection results (figure 10), the classifier also
performs well for this case. When no attenuation in radar returns, the classifier identifies most
regions where hail is dominant species except the high rain-hail density area. This is acceptable
since the model is trained from ‘clear’ data. It works well in areas where one species is dominant
but it is hard to predict when no dominant species exists. More studies on this issue have been
performed where both hail and rain are put in the single cell at different mixing levels. We hope
to model it using GMM in the further. Performance of classifier is bad when high attenuation
exists. After attenuation correction, most highly attenuated area has been recovered. Though it is
not perfect, classification result is much better.
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Figure 9. Simulated PPI scan for case 2 (with and without attenuation and after attenuation

correction)
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Figure 10. Hazards detection results for case 2(with and without attenuation and after attenuation
correction)

5.2 Ground-based OU’ data

To further validate knowledge obtained from single cell Monte-Carlo simulation and the GMM
hazards detection technique in realistic, noisy environment, ground-based radar observations of a
winter storm that happened in Oklahoma are adopted. Those dual-polarization radar
observations are from OU-PRIME, which is a high resolution, C-band radar operated by OU-
ARRC. According to operating frequency of OU-PRIME, simulations of 10,000 cases have been
performed on 5.51GHz without any noise effects. Since phase measurements (/;,) are much
easier contaminated by system noise than power measurements (Z3,Z 4, Phy), o0y Zp,Z g, Phy are
used as input to the classifier. Following the same steps as stated in section 2, a GMM classifier
with 3 mixtures are trained using 80% of the simulation data. The remaining 20% are used for
testing. Table.3 lists the accuracy for the classifier whose performance is similar to the one in X-

band.



Rain | Snow | MeltingSnow | Hail | MeltingHail
Rain 0.9655 o 0.0340 o 0.0005
Snow 0.0010 | 0.7375 0.2615 o o
MeltingSnow | 0.0645 | 0.2725 0.6630 o o
Hail 0.0035 | 0.0035 0.0025 0.9260 0.0645
MeltingHail | 0.0035 | 0.0035 0.0020 0.3315 0.66

Table 3. Classification accuracy of GMM model for OU-PRIME
(C-band)

Figure.u1 shows the radar observations and classification results. It was raining then turned into
snow that day. As we can see, classification results are reasonable, showing that melting snow
and melting hail (ice crystals) everywhere except for low py,, areas where SNR are low.

6. CONCLUSIONSs

Aerospace hazards mainly hydrometeor classification/detection is discussed. The proposed GMM
model performs well in general, even though it may fail to distinguish hail from high density of
rain. Single cell Monte-Carlo simulation provides a framework to accommodate various types of
aviation hazards beyond hydrometeors. Hard targets such as airplanes and birds can be put into
the single cell with hydrometeors, and generate realistic radar signatures for comprehensive
monitoring in the future. Attenuation correction techniques, which can also be learned from
simulations data, will be incorporated in GMM model to improve system performance in high
attenuation situations.
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Figure 1. Radar measurements from OU-PRIME and hydrometeor classification result
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