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1. INTRODUCTION1

 Proper measurement of noise power is of 
paramount importance for the estimation and quality 
control (a.k.a. censoring) of the weather radar data, 
which, in turn, is essential for the correct operation of 
automated algorithms and accurate forecasts derived 
from such data.  

 

 Incorrect noise power measurements may lead to 
reduction of coverage in cases where the noise power is 
overestimated or to radar data images cluttered by 
speckles if the noise power is underestimated. 
Consequently, correct noise power measurement is 
essential for proper operation of censoring techniques in 
both single and dual-polarized radars (Ivić and Torres 
2009, Ivić et al. 2009). Moreover, if erroneous noise 
power is used at low signal-to-noise ratios (SNR), 
estimators tend to produce biased meteorological 
variables (i.e., reflectivity and spectrum width as well as 
differential reflectivity and cross-correlation coefficient in 
case of dual-polarized radars).  
 Typically, the noise power in weather radars can be 
measured in several ways. For instance, on the National 
Weather Surveillance Radar – 1988 Doppler (WSR-
88D) the noise measurement is part of the online 
system calibrations performed after each volume scan. 
Such measurement takes place at a high antenna 
elevation angle and the result is adjusted using 
predetermined correction factors for other antenna 
elevations. In systems that do not have the capability to 
perform online calibrations (e.g., the National Weather 
Radar Testbed Phased-Array Radar) the noise power 
must be measured offline. Evidently, the downside of 
such approach is that it does not capture the temporal 
variations of noise power. Moreover, the nature of the 
noise sources in radar data is such that the noise power 
can have angular dependence in both azimuth and 
elevation (e.g., noise from cosmic radiation and from the 
oxygen and water vapor molecules) (Doviak and Zrnić 
1993). Consequently, the benefit of noise 
measurements at each antenna position becomes 
obvious. The only way such measurement can be 
performed operationally is in parallel with data 
collection. Thus, an efficient approach that estimates 
noise power from measurements that contain both 
signal and noise is desirable. 
 Ideally, noise power estimates would be produced 
at every sampling volume (e.g., by using spectral noise 
estimation methods). In the past, several techniques 
have been proposed. Hildebrand and Sekhon (1974) 
described a method that subjects the Fourier 
coefficients to a series of tests whereby coefficients are 
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recursively discarded until statistical conditions suggest 
only noise samples remain. Urkowitz and Nespor (1992) 
used the Kolmogorov-Smirnov (K-S) test applied to the 
periodogram by successively discarding the Fourier 
spectral lines until the criterion for the noise hypothesis 
is satisfied. Siggia and Passarelli (2004) used rank 
order statistics on power spectral density estimates to 
dynamically determine the noise level. Common to 
these approaches is discarding excess Fourier 
coefficients until the remaining ones satisfy conditions 
for noise. Inevitably, each approach introduces bias in 
noise level determination even if no signal is present 
and particularly for radar volumes with weather signals 
that have wide spectrum widths or if using a small 
number of samples in the dwell time. This cannot be 
avoided and the only question is how significant the bias 
is.  
 Ivić and Torres (2010) proposed a technique that 
performs more precise and continuous system noise 
power calibration. This technique is robust and feasible 
for real-time implementation on weather radars. The 
proposed method estimates the system noise power 
dynamically from the in-phase and quadrature data 
components at every antenna position (radial). The 
technique uses a novel criterion to detect radar volumes 
that do not contain significant weather signals and the 
system noise power from samples at these locations. 
Because it does not use the Fourier coefficients, this 
method overcomes the limitations of spectral-
processing-based techniques in cases when the 
numbers of samples at each range volume is small. This 
is usually the case in the so called surveillance mode 
where the unambiguous range is long and the number 
of range volumes devoid of signal is more than sufficient 
for accurate noise estimation.  
 In this work an improvement to the technique 
proposed by Ivić and Torres (2010) is presented. The 
number of steps in the procedure is reduced making it 
significantly simpler. Also, no prior knowledge of the 
approximate noise power is needed (unlike with the 
previously proposed method). The improved technique 
is evaluated on time-series collected with the National 
Weather Radar Testbed Phased-Array Radar (NWRT 
PAR) (Zrnić et. al. 2007), located in Norman, OK. 
Results show that the proposed technique produces 
noise power estimates that are closely matched to the 
ones obtained from manually identified, signal-free radar 
volumes at far ranges from the radar; thus, providing 
empirical validation. 

2. NOISE POWER ESTIMATION ALGORITHM 

Unlike the single-volume methods proposed by 
other authors, the algorithm presented in this paper 
produces a common noise power estimate for all radar 
volumes at the same antenna position (or radial) by 
using data from range volumes in which the presence of 
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signal is not detected. The assumption is that there are 
enough range volumes devoid of signal to yield noise 
power estimates with satisfactory accuracy. This is 
almost always true when using long pulse repetition 
times (PRT), which result in unambiguous ranges in 
excess of 300 km. On the other hand, when the PRT 
yields shorter unambiguous ranges, it is possible that 
the majority of samples contain signal as storms span or 
exceed the entire unambiguous range. In such cases, 
the algorithm is unable to produce reliable noise power 
estimates. For dual PRT scans (i.e., those using a long 
PRT for range coverage and a short PRT for Doppler 
velocity measurements), if the noise power at a given 
antenna position cannot be estimated from the short 
PRT data, it is usually available from the long PRT data. 

To illustrate the steps of the noise estimation 
algorithm we will use data collected with the NWRT 
PAR. This particular set of data was collected in a long 
PRT mode with unambiguous range of 465.6 km, which 
is typically used at low elevation angles. Radar echoes 
are range oversampled by a factor of 4; i.e., samples 
are 60 m apart and the transmitted pulse is roughly 240 
m long. The number of samples (M) in the dwell time is 
15, which results in dwell times typical of operational 
scanning strategies. This radar does not perform online 
calibrations so the default noise level is measured 
offline. The test power profile is shown in Figure 1. By 
visual inspection, we notice that the power is rather flat 
and weak beyond the 5000-th sample. This indicates 
that there should be no signal present at those ranges. 
By averaging the power of all samples beyond 5000, 
5500, and 6000 we get 18.106, 17.65 and 17.6. Thus, 
we assume the “true” noise power to be 17.6 (12.46 dB) 
in this case. 
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Figure 1. Received power as a function of range at the 
elevation angle of 0.5 deg. The number of samples for 
each radar volume is 15 and the range sample spacing 
is 60 m. The “true” noise power is indicated with a grey 
line. This data was collected using the NWRT PAR in 

Norman, OK. 

In the first step of the algorithm the portions of 
power profile with flat power are identified as this is an 
indication of the potential signal-free regions. This is 
done by estimating the local variance of powers at each 
range location from K samples as 
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and V(m,k) is the m-th sample at a range location k. The 
value of (1) can be used as an indication of signal 
presence. To illustrate this, time-series containing noise 
and signal+noise, with SNR linearly increasing from 0 to 
5 dB for K values of 50, 100 and 150, were generated 
and histograms showing probability density functions 
(pdfs) for VardB(k) are presented in Figure 2. As 
expected, the amount of overlap between noise and 
signal+noise pdfs is inversely proportional to K. Other 
aspect, which should be taken into consideration, is that 
if K is too large then the shorter flat areas, in the SNR 
profile, can easily pass undetected which can cause 
algorithm to fail due to insufficient amount of data. This 
becomes more important when using non-oversampled 
data and/or when the PRT is short. Consequently, the 
parameter K is chosen to be 150 in further discussion. 
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Figure 2. Histograms of local variance for different 

numbers of samples. 

Clearly, a threshold needs to be set such that any local 
variance estimate larger than some value is classified 
as “signal-like”. There are two aspects to choosing this 
threshold. If it is chosen too high, then too many 
samples containing signal will be classified as noise. On 
the other hand, if the threshold is chosen too low, 
excessive number of noise only samples are discarded, 
and the resulting noise estimate may be significantly 
biased. We choose to set the threshold THR so that 
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Because variance is estimated from powers in 
logarithmic units, the threshold value is not dependent 
on the absolute value of the noise power in the system. 
Another advantage of this approach is that the power 
estimates in logarithmic units are part of the reflectivity 
calculations, so the amount of additional computations 
incurred by the procedure is minimized. In particular, if 
M is 15 and K is 150 the threshold is 252. The results of 
applying this threshold are shown in Figure 3 where 
areas classified as noise only are highlighted in grey. 
Note that the power profile has been normalized by the 
far range (i.e., ‘true’) noise power to obtain SNR. It is 
apparent that areas which contain strong signal, but are 
rather flat, are classified as potential noise by this step; 
thus, if retained, these samples can severely bias the 
noise estimate. Consequently, further filtering is needed.  
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Figure 3. SNR profile with regions selected as potential 

noise, in the first algorithm step, highlighted in grey. 
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Figure 4. SNR profile of data after discarding samples 

at regions where power is larger than THRint. 

 Next, the mean power is calculated for each set of 
contiguous range locations classified as noise. Out of 
these estimates the smallest one is taken to be the 
intermediate noise estimate (Nint). Then, we discard all 
samples at range locations for which power estimate is 

larger than the threshold THRint chosen as (Appendix A 
in Ivić 2009) 
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In this particular case, M is 15 and the THRint equals 
2.5Nint. The power profile of the remaining data is given 
in Figure 4 and the mean power is 0.552 dB above the 
far range noise. 
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Figure 5. (a) Highlighted range locations discarded by 
the range ‘persistence’ filter. (b) SNR profile after data 

at highlighted locations has been removed. 

The next step is to apply a “range persistence” 
filter. The filter finds 10 or more consecutive power 
values that are larger than the median power in the set 
and discards them along with 10 samples on either side. 
The rationale for choosing 10 consecutive samples is 
following. The probability that one power sample is 
larger than the median is 0.5; hence, the probability that 
10 randomly chosen independent samples are larger 
than the median is 0.510 = 9.76×10-4. Consequently, this 
filter should detect and remove larger sample powers 
(evidence of signal-like returns) that exhibit some 
continuity in range while leaving those in predominantly 
noise areas. Range locations that are discarded by the 
range persistence filter are highlighted in Figure 5a. 



After these are removed, we obtain Figure 5b. The 
mean power of the resulting set is 0.23 dB higher than 
the “true” noise power for this case. 

In the third step, the matrix of samples (range time 
vs. sample time) is reshaped into a vector where the 
samples from 1 to M belong to the first column of the 
matrix, samples M+1 to 2M belong to the second 
column of the matrix and so on. Then, a running 
average of K samples is performed as 
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where V(k) are the elements of the reshaped samples 
vector. K needs to be large enough to make the 
remaining weak signal detectable and is chosen to be 
750. Figure 6 shows the power profile resulting from 
applying the moving average on the sample data set. 
Note that this makes the SNR range profile of (5) 
appear higher in the region encompassing samples 
3000 to 13000 which is an indication of signal presence. 
In a noise-only case, the probability that one averaged 
point is larger than the mean N times D is (Ivić and Zrnić 
2009) 
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When D is 1.1 (or 110% of the mean noise power) and 
K is 750, this probability is 0.38%. The mean is found 
from the data after the range persistence filter. 
Averaged points that are larger by more than 10% of the 
so found mean (herein referred to as “outliers”) are 
detected and all samples that went into the averaged 
points are discarded. This is repeated while the number 
of discarded samples is larger than 0.0038 times the 
total number of samples or up to a maximum of five 
iterations. In this particular case the outlier filtering is 
performed three times. Data discarded in the first 
iteration is grayed in Figure 6. The mean power after the 
last step is 17.61, which is in almost perfect agreement 
with the “true” or far range noise level. 
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Figure 6. Power range profile after applying moving 

average filter with positions discarded in the first 
iteration of the algorithm highlighted in grey. 

The steps of the algorithm are summarized below: 

1) Calculate variance as given by (1) and classify 
each range position as either containing signal, or 
not, by comparing to a threshold. 

2) Group consecutive range locations, classified as 
signal free, and estimate mean power for each 
group. Take the smallest estimate and calculate the 
threshold based on it so it satisfies (4) (e.g., using 
Newton iteration). 

3) Run range persistence filter that detects 10 or more 
consecutive samples with power larger than the 
median and discard them plus 10 surrounding 
samples on each side. 

4) Reshape all samples into a one dimensional array. 
5) Obtain mean power. 
6) Perform running average of 750 points. 
7) Discard samples used to obtain averaged points 

larger than 1.1 times the mean power from step 5. 
8) If the number of discarded samples is smaller than 

0.0038 times the total number of samples or the 
number of repetitions of steps 5, 6, and 7 is 5, exit 
algorithm and output power obtained in step 5. 
Otherwise, go back to step 5. 

3. PERFORMANCE EXAMPLES 

 In this section, two examples of the algorithm 
performance on time-series data are presented. Both 
sets of data were collected with the NWRT PAR. As 
mentioned before, this radar does not perform online 
calibrations; thus, if noise is not estimated from data, the 
initial value of 19.5 (obtained by offline measurements) 
is used for product generation. The first data set is from 
a dual PRT tilt with a long PRT of 3.104 ms and the 
number of samples (M) is 15.  A short PRT is 0.896 ms, 
with M of 44, at an elevation of 0.51 deg. The algorithm 
is set so that if fewer than 1000 samples remain after 
step 8, the technique is unable to produce a reliable 
noise power estimate. By imposing the requirement that 
the estimates are made from at least 1000 samples, the 
algorithm is prevented from producing results when the 
majority of samples contain signal. Additionally, if 
exactly 1000 samples are used for estimation, the 
estimate is within ±10% of the true mean with 0.998 
probability. In this particular example, the algorithm fails 
to produce results from the short PRT data rather often. 
When this occurs, the one from the long PRT is used. In 
this example however, even in the cases when the 
algorithm produces results from the short PRT data, the 
samples are usually heavily inundated with signal so the 
noise power is frequently overestimated. Consequently, 
the short-PRT and long-PRT estimates are compared 
and the two results are combined only if they are within 
5% of each other. Otherwise, only the long PRT 
estimate is used. In Figure 7a, the estimated noise 
power is plotted with the one obtained from the distant 
ranges free of visible signals (the “true” noise). This 
shows that the proposed noise power estimator is 
reliable and robust as it produces values close to the 
true noise power. Figure 7b shows the reflectivity field 



obtained using the estimated noise power and using 
CBT (Coherency Based Thresholding) for detection (Ivić 
and Torres 2009). The additional detections obtained 
using the estimated noise power as opposed to the 
default one are highlighted in white. Total number of 
detections is 50335 if using the default noise and the 
additional 1527 (3% more) are gained when using the 
noise estimation technique. 
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Figure 7. (a) Noise estimates compared to the initial 

(default) and the far range (“true”) noise, and (b) 
reflectivity field with additional detections obtained using 

estimated noise highlighted in white. 

 Another example is presented next. The PRT used 
for this scan was 3.104 ms with 15 samples (M = 15) 
per dwell for surveillance and 44 pulses at 0.984 ms for 
Doppler scan. The results are presented in Figure 8. As 
in the previous case, it is apparent, from Figure 8a, that 
the estimated and the ”true” noises agree very well. 
Figure 8b shows the reflectivity field obtained using the 
coherency based censoring technique (CBT). Additional 
detections resulted from the use of the noise power 
estimation algorithm are highlighted in white. In this 
particular case, these are minimal because the default 
noise power is, on average, only 0.16 dB above the 

estimated one. Consequently, additional detections 
account for only 178 out of 27057 (or 0.7%). 
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Figure 8. (a) Noise estimates compared to the initial 

(default) and the far range (“true”) noise, and (b) 
reflectivity field with additional detections obtained using 

estimated noise highlighted in white. 

4. SUMMARY 

 A method to estimate noise power dynamically from 
data was presented. Through a set of steps, the 
algorithm classifies samples as containing signal or not. 
The main advantage of this technique is that it does not 
require an initial rough guess on the noise power. First, 
running local variance is calculated for the power data 
and it is compared to a predetermined threshold. This 
detects areas of the range profile that are rather flat as 
this is an indication of potential signal-free locations. For 
each group of consecutive range locations that are 
classified as potentially signal-free, the mean power is 
estimated. Based on the smallest value, another 
threshold is produced so that range locations with power 
larger than this threshold are discarded and new data 
set is obtained. Then, range locations with powers that 
are consecutively higher than the median are removed. 
At this point, all the remaining samples are rearranged 
into a row vector and a running average is performed to 



make the remaining weak signal areas more evident. To 
dispense with the remaining signal, all samples 
associated with the averaged points larger than 10% of 
the mean power are discarded. The last step is 
repeated until the fraction of discarded samples falls 
under 0.0038. The noise estimate is produced from the 
remaining samples by finding mean power. In the 
implementation presented in this paper, the minimum 
number of the remaining samples required to produce 
reliable estimate is set to be 1000. The algorithm 
accuracy was verified by comparing its results to the 
noise powers obtained from the data at the far range 
positions devoid of visible signals. Such comparison 
shows that the technique produces noise powers with 
improved accuracy as opposed to offline and online 
calibrations with minimal bias. 
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APPENDIX A 

 In this appendix, we derive the expression for 
threshold used in the first step of the algorithm. To do 
this we need to know the pdf of VardB(k) in case all 
samples are white noise. Because VardB(k) is function of 
numerous random variables the analytical derivation of 
the pdf using variable transformation becomes 
intractable. One solution would be to find threshold 
through search using Monte-Carlo simulations (Zrnić 
1975).  Even with such an approach it would be 
beneficial to have an analytical expression which could 
produce approximate threshold value which would then 
be corrected using simulations. The pdf shapes in 
Figure 2 are similar to the gamma distribution: 
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This distribution is defined by the first two moments; 
thus, if we analytically derive the first two moments of 
the VardB(k) estimator we can produce the pdf model to 
be used in the search. We start by deriving the first 
moment as 
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Hence, to calculate the terms in (A.2) we need to derive 
the pdf of 
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We do this using the known pdf of ( )P̂ k from Ivić (2009) 
and get 
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which we can evaluate numerically. Next, we find the 
second moment as 
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We can check how well the gamma distribution models 
the pdf of VardB(k) by comparing the third and the fourth 
moment obtained using Monte-Carlo simulations and 
those calculated as 
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This is shown in Figure 1.A. The plots imply that the 
gamma distribution matches the actual one up to the 
fourth moment. 
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Figure 1.A. Ratio of the estimated and the calculated 

moments. 

Accordingly, using a gamma distribution that satisfies 
(3) to produce the threshold should yield the desired 
result. This is presented in Fig. 2.A where the probability 
is estimated using plain Monte-Carlo integration as 
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Using the gamma approximation, the threshold can be 
found using Newton iteration as 
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are gamma and gamma incomplete functions. The 
estimated probabilities presented in Figure 2.A imply 
that the threshold found using a gamma distribution 
produces the desired probabilities (0.01 in this case) up 
to the statistical error. Consequently, one can produce 
thresholds for each sample number (M) using a gamma 
distribution approximation and arrange those into table 
so they can be easily retrieved during real-time 
processing. 
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Figure 2.A. Probabilities obtained using Monte-Carlo 

integration with threshold assuming a gamma 
distribution. 
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