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1. Introduction 
 
Traffic flow management (TFM), i.e. the balancing of demand with capacity in a transportation network 
through prescient action, is a key need in the United States National Airspace System (NAS).  While TFM 
capabilities have been extensively developed for the NAS over many years, the increasing cost of air 
transportation as well as the ever-growing congestion of the NAS requires new approaches for managing 
traffic.  As the NAS operates near its tolerance, it is critically important that automated decision-support 
tools be developed that coordinate TFM capabilities at increasingly larger spatial scales and provide 
plans over longer time horizons.  A key goal of the Next Generation Air Traffic System (NextGen) project 
is the development of such strategic decision-support tools that enable coordinated controls to be 
identified that effectively manage congestion at a NAS-wide scale and 2-24 hour time horizon. 
 
A wide research effort is underway in the air transportation community, to develop strategic traffic flow 
management capabilities.  As this research progresses, several key challenges in strategic TFM are 
coming to the forefront.  One key challenge, which is the motivation for the work presented here, is the 
critical role of uncertainties – specifically, uncertainties in weather evolution and its impact on air 
transportation – in decision-making at the strategic time horizon.  For instance, stakeholders in the NAS 
must often develop a plan to respond to a potential weather event (e.g., a developing winter storm in 
the Northeastern United States) for a long look-ahead time (e.g., a full day).  At this time horizon, there 
is a significant uncertainty in forecasting weather evolution and its impact on the NAS.  As such, there 
often is not a single plan that can manage the disruptions from all possible weather outcomes to the 
satisfaction of the stakeholders. The development of decision-making tools that can account for and 
react to these uncertainties efficiently and equitably is a difficult challenge. 
 
Flow Contingency Management (FCM) is a proposed operational concept for a decision support tool for 
strategic TFM that can address core challenges including the need for action in the face of significant 
uncertainty.  The core principle of FCM is that it generates and manages multiple sets of control action 
plans, or contingencies, at the resolution of aggregated traffic flows in the NAS, in order to span the 
range of likely outcomes. For FCM to define such plans it is critical that tools and capabilities be 
developed that 1) can rapidly identify probabilistic trajectories or futures or scenarios of weather and its 
impact on traffic flows, 2) permit computation of weather-impact statistics, and 3) can readily be 
interfaced with dynamic traffic models to permit efficient design of contingency plans. We believe that 
these modeling needs currently are not fully addressed in either the weather forecasting or the air 
transportation community, and that collaborative effort between transportation engineers and weather 
forecasters is needed to achieve the required weather-impact modeling capabilities.  The purpose of this 
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article is to introduce one approach to weather-impact scenario generation for the NAS that leverages 
existing weather-forecasting capabilities and yet can provide the necessary information for FCM.  
Through this development, we also intend to convey more broadly that weather and weather-impact 
forecasting capabilities for the National Airspace System (NAS) are badly needed and challenging to 
develop, and as such aim to foster discourse between weather forecasters and air transportation 
engineers on suitable methodologies. 
 
Given the need for probabilistic scenarios of weather impact in FCM, ensemble-forecasting and 
probabilistic-forecasting tools are of significant interest to us, and we have considered their use in 
scenario-generation for FCM.  For several reasons, these forecast products do not directly yield solutions 
for FCM: 

1) The forecasts describe weather phenomena, while we require models for the NAS-related 
parameters (e.g., regional capacities, airport acceptance rates, etc), many of which are discrete-
valued quantities. Thus, the probabilistic forecasts require translation to weather-impact 
forecasts. 

2) The ensemble and probabilistic forecasts often do not provide trajectories of weather (or 
weather impact) evolution at the temporal and spatial resolution necessary for providing the 
TFM decision support capabilities desired as current propagations of weather display complex 
uncertain spatial and temporal correlations (rather than only initial-condition uncertainties).  As 
such, FCM requires tools and information that can provide a much larger family of scenarios 
with realistic temporal and spatial correlations than are directly evident from ensemble or 
probabilistic forecasts. 

3) We require tools that permit scenario-generation and statistical analysis at low computational 
cost, and can be integrated or interfaced with traffic flow models.  To produce the information 
required for FCM, an abstraction of the physics of weather dynamics is permissible, if it enables 
fast estimation of the variability of weather impact. 
 

While ensemble and probabilistic forecasts do not directly address our needs in FCM, it is critical that we 
leverage these forecasting capabilities to inform weather-impact scenario generation.  The approach for 
scenario-generation that is suggested here makes use of ensemble and probabilistic forecast capabilities 
to construct the scenario generator which generates FCM-relevant scenarios that match and interpolate 
the probabilistic weather forecast.  
 
In pursuit of the FCM goals stated above, we have introduced a new concept for dynamic weather-
impact modeling in our earlier work (Roy, 2010).  This methodology aims to fulfill the FCM concept 
requirements of providing weather-impact rather than weather information, tracking dynamics at the 
proper resolution, and achieving low-computation analysis. Our approach to weather-impact simulation 
is based on a stochastic, dynamic network model known as the influence model.  At its essence, the 
simulator aims to capture the propagation of weather-impact among airspace regions using simple 
probabilistic selection and adaptation rules.  This abstract description appears to permit realistic 
scenario-generation and statistical analysis with little computational effort, while capturing the rich 
temporal and spatial propagations/correlations that are observed in real weather. This simulator is able 
to generate multiple simulated weather impact outcomes for each set of initial conditions, and allows 
simple analysis of weather-impact statistics at critical airspace locations. While the simulator thus shows 
promise as a tool for FCM, in our previous work we did not attempt to construct the simulator to match 
real weather-forecast outcomes.  Thus, a key need in further development and evaluation of the 
simulator is to parameterize the model to match a particular period’s weather forecasts so that the 
model generates weather futures that are likely for that particular forecast period.  In this paper, we 



envision and then illustrate the use of ensemble-forecast and probabilistic-forecast data for this 
parameterization, and thus clearly link ensemble or probabilistic forecasting with weather-impact 
modeling.  Our initial results are promising, but also bring forth many new questions at the interface of 
weather forecasting and transportation network engineering. 
 
In sum, this article aims to 1) introduce the weather forecasting community to needs in flow 
contingency management and the weather-impact simulator concept, 2) evaluate weather forecasting 
capabilities from the perspective of their use in FCM, and 3) illustrate the parameterization of the 
weather-impact simulator using ensemble/probabilistic forecast data. To this end, we progress as 
follows: 

 In Section 2, we introduce the weather-impact simulator. 

 In Section 3, we conceptualize how several ensemble and probabilistic weather-forecasting 
products can be used to construct the weather-impact simulator, and more generally to inform 
weather-impact modeling for FCM.  In the process, we also highlight the need for further insight 
from the weather forecasting community in impact modeling. 

 In Section 4, we present an example illustrating the parameterization of the weather-impact 
simulator using ensemble- or probabilistic- forecast data. 

 
 

2. The Weather-Impact Simulator: Review  
 
In (Roy, 2010), we developed a stochastic network model for the spatial and temporal evolution of 
weather impacts, which is promising as a tool for FCM.  Specifically, this work enhanced previous efforts 
that examined weather-impact forecasting at the strategic timeframe, see (Steiner and Krozel, 2009) 
and (Ren et al., 2007), to capture the dynamics (time-evolution) of weather impact.  This dynamic model 
is promising for FCM because it 1) can permit fast generation of weather-impact scenarios with realistic 
levels of uncertainties, 2) can be incorporated into aggregate models for traffic flow dynamics, and 3) 
can permit computationally-efficient analysis of temporal and spatial correlations in weather impact. In 
(Roy, 2010), we argued for using a particular networked-Markov-process model, called an influence 
model, for the spatial and temporal evolution of discrete-valued weather impacts.  The influence model 
is promising for weather-impact modeling because it can capture a rich set of stochastic evolutions as 
needed for weather-impact modeling, yet its special structure allows us to 1) parameterize the model 
based on current weather impact and a weather-impact forecast at a future time and 2) simulate and 
achieve statistical analysis of weather impact.  In (Xue, 2010a), we provided a detailed 
conceptual/mathematical introduction to the weather-impact model, and explained at a conceptual 
level how parameterization and simulation/analysis could be undertaken using the model.  We also gave 
several illustrative examples of the model’s use.  However, critically, we did not demonstrate 
construction of the model for a real historical weather scenario, based on weather-forecast data. In 
Section 4, we will construct a weather-impact model for propagation of convective weather during a 
bad-weather day in Atlanta using probabilistic forecasts.  This concrete example is of importance in that 
it indicates the feasibility of the weather-impact modeling approach in capturing real weather events, 
while also highlighting challenges in constructing and using the model. 
 
Here, for the reader’s convenience, we repeat the development of the weather-impact model given in 
(Roy, 2010).  Specifically, we first formulate the influence model for weather impact (Section 2.1), then 
overview the approach to model parameterization (Section 2.2), and finally give an overview of 
scenario-generation and statistical analysis of the model for FCM (Section 2.3).  Compared to our 



previous development, we extend the model-parameterization discussion to list concrete challenges in 
parameterization from real weather forecasts, which then will be addressed in Sections 3 and 4.  We 
also briefly highlight recent progress in interfacing the weather-impact model with queuing models for 
FCM in Section 2.3. 
 
 

2.1. Model Formulation 
 
At the strategic time frame, prediction of fine weather structure and its consequent impact on air traffic 
is probabilistic.  That is, weather prediction capabilities are accurate enough to yield probabilities of 
weather-impact events (Steiner, 2009), but not to predict these events with certainty.  For instance, 
weather models may be able to predict the passage of a cold front through a terminal, but most likely 
will not be able to predict the precise locations of capacity-reducing convective cells along the front, nor 
pin down the front-passage time exactly.  Given this fundamentally probabilistic description of weather 
impact at the strategic time horizon, our goal is to develop a model for weather-impact dynamics (time 
evolution) that is stochastic but matches the probabilistic descriptions that have been obtained from 
weather forecasts at one or several times.  In other words, we are seeking a model that provides a 
different sample of weather-impact dynamics (time-evolution) on each simulation (reflecting the 
inherent uncertainty at this time frame), but with statistics that match probabilistic forecasts at one or 
several times.   Such a stochastic model for weather impact is valuable because it can permit statistical 
evaluation of flow-management performance, through simulation and mathematical analysis (if the 
model is sufficiently tractable).   Let us describe a class of models that can capture stochastic weather-
impact evolution, and then discuss selection of model parameters to match forecast probabilities. 
 
Let us consider modeling weather-impact states in regions of the airspace.  These may be selected 
according to the user’s preference, for instance the regions may be air traffic control sectors (see Figure 
3.6) or may be lattice squares in the airspace (see e.g. Figures 3.9 and 3.10).  Specifically, we view each 
region of the airspace (or site in the model) as having a discrete-valued weather-impact state evolving 
in time, which reflects the operational characteristics of the airspace region resulting from weather 
events during a strategic (one-day) time horizon.  For instance, en route airspace may be simply 
modeled as having three possible weather-impact states, Full Capacity (F), Reduced Capacity (R), and No 
Capacity (N), or more precisely modeled with multiple levels based on characterizations of capacity 
(Song, 2007).   We note that the modeling framework allows different cardinalities of weather-impact 
states in different regions, so for instance terminal-area airspaces could be represented at higher fidelity 
than en-route ones. 
  
Each region’s weather-impact state is viewed as evolving stochastically.  The state evolution is modeled 
as occurring in discrete time, but we note that the time-step of the model may be chosen at our 
convenience (with the understanding that the computational complexity of model analyses are inversely 
proportional to the time-step); here, we will choose a time-step that matches the temporal granularity 
of flow-management actions (e.g., 15 minute intervals). In particular, we model the weather-impact 
states’ evolutions as a networked Markov process: at each time (time-step), each region’s next state is 
generated based on probabilistic influences that are modulated by its neighbors’ current states.  More 
precisely, we model each region at a particular time instance as being probabilistically influenced 
through weighted random selection of a single neighboring upstream region (possibly including itself). 
Specifically, each site in the network is viewed as selecting one among several upstream neighbors (as 
specified by a network graph) with some probability, whereupon the current weather-impact state of 



the upstream neighbor specifies the probability of the site’s next state.  We notice that this type of 
stochastic update can be interpreted as follows: first, each site’s selection probabilities can be viewed as 
capturing spatial influence rates/strength (and hence we call them network influence rates or 
probabilities); second, the stochastic update from the selected neighbor’s current weather-impact 
status captures the nature of weather-impact propagation due to these influences (and hence is 
specified by local influence matrices).  Stochastic update equations of this form can be used to capture 
typical weather-impact progressions, including generation, dissipation, persistence, and drift of weather 
impact, while still capturing the significant variability in weather at the strategic time frame.  
Furthermore, the model for weather impact that we have given falls in the class of influence models 
(Asavathiratham, 2001), a sub-class of stochastic network models whose statistics are especially 
tractable, and easy to parameterize and simulate.   
 
We kindly ask the reader to see the Appendix of (Roy, 2010) for a brief mathematical formulation, and 
to see (Asavathiratham, 2001; Asavathiratham, 2000; Roy, 2003; Wan, 2009; Xue 2010a) for a thorough 
formulation and analysis of the influence model.  Very briefly, these studies show that the influence 
model has the following core tractability: statistics of individual sites and small groups of sites can be 
found with little computational effort, using low-order linear recursions.  Of relevance to our 
development here, we note that the computational complexity of finding individual sites’ status 
probabilities is quadratic in the number of sites and the number of statuses, while the complexity of 
correlation-analysis exhibits a quartic (fourth-order) dependence.  The methods used in the context of 
the weather-impact model fundamentally derive from this special tractability. Now that the model has 
been formulated, let us summarize results on its parameterization, simulation, and analysis, before 
developing three examples.  
 
 

2.2. Parameterization 
 
To permit quantitative prediction using the weather-impact model, we must first parameterize the 
model.  We propose to parameterize the model so that it’s predicted weather impact matches current 
weather impact at zero prediction time, and matches probabilistic forecasts of weather impact at one or 
more future time snapshots. To achieve such a parameterization, two advances are fundamentally 
needed: as a preliminary step, weather forecasts must be translated to weather-impact forecasts (upon 
selection of a proper weather forecast, see Section 3); and second, the influence model parameters 
must be designed to match the forecasts at times of interest.  The problem of translating weather to 
weather-impact has begun to been considered in the air transportation literature: we ask the reader to 
see (Steiner, 2009) and (Ren, 2007) for some preliminary ideas on how weather impact forecasts can be 
obtained from ensemble weather forecasts, and we also note that methods for capacity estimation can 
be brought to bear for translation. The probabilistic weather-impact forecasts obtained through such 
translation may themselves provide value for traffic management, but 1) only indicate weather-impact 
probabilities in individual regions and not correlations among weather impacts in several regions, and 2) 
are valid at only certain widely-spaced time snapshots. Once these forecasts have been obtained, we are 
thus required to find parameters for the dynamic weather-impact model that we have proposed so as to 
match the forecasts. This problem can be viewed as that of designing an influence model’s interaction 
parameters, so that individual sites’ state probabilities meet forecasts at one or a few time-snapshots.  
We have partially addressed this snapshot-design problem in our concurrent work (Xue, 2010a), and 
here propose using and extending the developed methodology to parameterize the weather-impact 
model. 



 
Although our focus is on motivating and using the weather-impact model, let us briefly discuss the 
mathematics underlying the snapshot-design method, to give the reader some intuition into the model’s 
parameterization.  The snapshot-design problem is related to numerous problems on inference of 
stochastic network models, but differs from the bulk of these problems in that the parameters are being 
obtained from a probabilistic forecast rather than from data, and therefore information is available at 
only a few time snapshots.  Fundamentally, our method for snapshot design (Xue, 2010a) derives from a 
core tractability of the influence model.  Let us discuss this tractability and hence the method for 
parameterization, using terminology specific to the weather-impact model for the reader’s convenience. 
Specifically, the relevant tractability of the weather-impact model is that individual regions’ weather-
impact probabilities can be found over time without considering correlations and other higher-order 
statistics, and hence can be computed using a low-order linear recursion (one whose dimension is on 
the order of the number of regions).  The snapshot-design problem thus can be viewed as a problem of 
designing the low-order linear recursion to achieve desired weather-impact probabilities at particular 
time-steps, while maintaining the specified graph structure of the model (in our case, reflecting that 
influence interactions occur between geographical neighbors). This design problem has been solved for 
various cases using both iterative methods and explicit computations in (Xue, 2010a); we ask the reader 
to see that paper for details (see also (Xue, 2010b) for a related method).  It is worth noting that model 
parameters may remain free even after the probabilistic forecast is matched, and this additional 
freedom can be used to capture further qualitative and quantitative features of the weather-impact 
dynamics.  In the example given in Section 4, we will discuss how these additional degrees of freedom 
can be exploited to tune the extent of spatial and temporal correlation of the weather-impact 
trajectories. 
 
Beyond the systematic parameterization discussed above, a couple of ad-hoc approaches are worth 
noting.  Of interest, if probabilistic forecasts are not available and instead only some aggregate 
predictions about weather-impact are available (e.g., location of a cold front), model parameters can be 
inferred so that the weather propagation has certain basic characteristics (e.g., a drift speed or a growth 
or decay characteristic over the time horizon).  Weather model outputs such as wind-field maps can also 
aid in constructing the networked Markov models.  We will explore this possibility in future work. We 
will also continue to study the automated translation of weather forecasts to weather-impact snapshots, 
so as to best leverage forecasting capabilities in parameterizing the weather-impact model. 
 
 

2.3. Simulation and Analysis 
 
The special structure of the influence model dynamics permits fast simulation and significant analysis of 
weather impact, once the model has been parameterized.  Let us list several of the key analyses of 
weather impact that are permitted by the model’s special structure: 

1. Simulation of weather impact over a one-day time horizon, with very little computational and 
storage effort; specifically, effort scales linearly with the number of regions and the duration of 
the simulation.  Individual scenarios can be generated very quickly, in less than 1 second of 
computation time.  Multiple spatiotemporal trajectories can thus be easily obtained based on 
the probabilistic description, and so the range of possibilities in weather impact can be 
characterized.  We are currently developing a procedure for representative scenario selection 
using a quadrature-based clustering algorithm, whereby a small number of scenarios 
representing qualitatively-different weather outcomes are selected and assigned probabilities.  



These weather-impact scenarios (and/or representative weather-impact scenarios) may be 
valuable for both designing and evaluating FCM strategies. 

2. Low-order analysis of the time-evolution of weather-impact probabilities in each region, using 
the linear recursion for individual regions’ state probabilities.  Specifically, the computational 
effort required is that of simulating a sparse linear recursion whose dimension is equal to the 
number of regions; even for a large-scale example with several thousand regions, the 
computational complexity is low. This basic analysis serves to interpolate the snapshot forecasts 
that are being matched through the parameterization, as may be needed in evaluating the 
performance of FCM strategies (in terms of e.g. delays). 

3. Low-order analysis of spatial and temporal correlations in weather impact at several locations, 
with the complexity of the analysis growing gracefully with the number of regions whose joint 
statistics must be ascertained. Of particular interest, the computational complexity of finding 
pair-wise correlations (joint probabilities that pairs of sites have certain weather-impact 
statuses) is roughly the square of the computational complexity of finding individual regions’ 
weather-impact probabilities. This correlation analysis is necessary for the design and evaluation 
of FCM, since it can be used to indicate patterns in weather impact at critical locations in the 
airspace. 

4. Analysis of several other temporal statistics of weather impact, for instance the duration or 
start/end time of a weather-impact event at a critical location in the airspace (e.g., in a terminal 
airspace).  Characterizing these temporal statistics of weather impact can aid in fast simulation 
of FCM strategies (Wan, 2011) and in designing non-conservative FCM strategies. 

These various tractabilities of the weather-impact model readily follow from the core analysis of the 
influence model. We have excluded these details, and ask the reader to see the theses (Asavathiratham, 
2000), (Roy, 2003), and (Wan, 2009) for them.   
 
The weather impact simulator produces stochastic weather impact dynamics that can guide decision-
making for FCM under weather uncertainty. Specifically, the generated stochastic weather impact is 
interfaced with flow dynamic models, so as to evaluate and design management strategies based on 
statistical performance measures. We are in the process of developing dynamic queuing network 
models and the associated analytical and design tools that permit the seamless integration of the 
weather and flow models, e.g. (Wan, 2011; Zhou, 2011).  In (Wan, 2011), we developed a queuing 
network model, in which stochastic weather impact is considered as modulating the parameters (e.g., 
capacity constraints) of the queuing network model. In (Zhou, 2011), we introduced two analytical 
approaches---the integrated Markov chain approach and the jump-linear approach that allow the 
systemic evaluation of dynamic delay performance under stochastic weather.  

 

3. Using Probabilistic Forecasts to Inform Weather-Impact Simulation 
 
The probabilistic weather-impact scenario generator requires parameterization to match forecast 
weather predictions, where a major goal of the simulation will be to provide weather impact scenarios 
that are consistent with the input weather forecasts.  Parameterization of the weather-impact model 
requires weather data including current weather conditions, weather forecasts, and possibly historical 
data. Historical data can help verify the simulator and parameterization, but it is the weather forecasts 
that are both critical to parameterization and perhaps the limiting resource in achieving accurate 
parameterization.   
 



Parameterization can use any type of weather phenomenon that can be hazardous to aircraft and can 
be translated into capacity impacts, either in en route or terminal areas. Convective weather has 
historically been the largest weather-related contributor to delay in the NAS (DeLaura, 2008), and is the 
initial focus of this research.  Also, there are several studies of the impact of convective weather on 
airspace capacity (Davis, 2005; Song, 2007; Krozel, 2007; Klein, 2008; Weber, 2005; Martin, 2006).   
 
Other weather phenomenon including turbulence, icing, winter weather, stratus, surface wind (at 
runways) can disrupt operations and their forecasts may eventually be incorporated into the impact 
scenario generator. Storm altitude information, such as storm or echo tops forecasts, may also be 
included to help predict the altitude impact of storms. 
 
Weather forecasts are needed that adequately cover the strategic FCM decision making time horizons, 
from 2 hours to at least 8 hours and potentially to 24 hours in the future.  
 
 

3.1 Candidate Probabilistic Weather Forecasts 
 
Any forecasts used for parameterization must convey information about multiple possible weather 
outcomes. Probabilistic forecasts convey these possibilities, although in a very basic way. And there are 
multiple probabilistic forecasts routinely generated that can provide the data needed for this research. 
 
The probabilistic Very Short Range Ensemble Forecast System (VSREF) and Short Range Ensemble 
Forecast (SREF) forecasts have been selected for the initial parameterization. These forecasts provide a 
gridded field of weather probabilities for different weather phenomenon, including convection. The 
VSREF is produced by National Center for Environmental Prediction (NCEP) with forecasts out to 12 
hours at 1 hour intervals, and hourly updates (Zhou, 2010). The VSREF is focused on weather that 
impacts aviation and air traffic management. The SREF is produced by the Storm Prediction Center (SPC) 
with forecasts out to 87 hours at 3 hour intervals, and updates every 6 hours (Bright, 2009).  Our ability 
to obtain historical forecast data for these forecasts has been a major factor in selecting them. 
 
The High Resolution Rapid Refresh (HRRR) model is an alternate forecast candidate. This is a 12 hour 
probabilistic forecast produced by the Earth System Research Laboratory (ESRL) (Smith, 2008).  
 
Other forecasts will also be considered for use in parameterizing the simulation, including new forecasts 
as they are implemented. Weather forecasts must adequately cover the strategic look-ahead times and 
convey as much information as possible about this range of possible weather outcomes. These forecasts 
must also forecast the types of weather phenomenon that impact aviation and air traffic management 
and can be translated to reductions in capacity. 
 
 

3.2 Ensemble Forecasts 
 
Ensemble forecasts, where each ensemble member can be treated as a possible weather outcome, 
could also be used to inform the simulation.  However, forecasts that include individual members are 
not widely available. One of the easiest ways to obtain ensembles is to use time lagged forecasts (Zhou, 
2010; Bright, 2009); however this technique produces a limited number of members and the members 
may not be widely varied. Other techniques for generating ensembles include initial perturbation (Wei, 



2008; Steiner, 2008). These can produce a wide variety of ensemble members but can be very expensive 
to generate. Also, there is limited historical data available from ensemble forecasts using initial 
perturbation. 
 
In addition to the computational expense and lack of data availability, there are other issues associated 
with using ensemble forecasts. First, it is difficult to estimate the probability of occurrence of each 
ensemble member and to estimate how well the set of all members covers the potential outcome space 
given that the real outcome will usually not be an exact match to any of the members. Also, if clients are 
processing each member instead of using a probability field derived from the members (as is common in 
today’s forecasts), this places a higher accuracy requirement on each member and makes unrealistic 
outliers less tolerable. 
 
As a result of the aforementioned issues, our initial research effort does not use ensemble forecasts; 
however future research will continue to investigate their inclusion as ensemble forecasts can have 
advantages. The ensemble members provide a great deal of additional information beyond what is in a 
probabilistic forecast. For example, inferring the forecast storm type, speed, and the degree of storm 
organization may be possible using the ensemble members. This information can be hard to derive from 
a probability field where the uncertainties in storm location, movement, initiation, growth, and decay 
are combined. 
 
Finally, if sufficient ensemble members could be cost-effectively generated to adequately cover the 
outcome space with sufficient lateral and temporal resolution then it may be possible to use these 
directly to generate impact scenarios. However, this is a difficult and expensive undertaking and it may 
be a long time before this could be implemented. As such, the probabilistic weather impact scenario 
generator can delay or replace the need for large expensive ensemble forecasts, while supporting near-
term research. 
 
 

3.3 Forecast requirements for FCM 
 
In order to select the weather forecasting products to be utilized in FCM, it is necessary to carefully 
consider the weather-impact models and parameterization requirements.  For the weather-impact 
simulator, three sets of parameters need to be identified: initial conditions that drive the simulator, 
stochastic interactions among regions, and stochastic transitions among weather impacts.  The 
requirements for all three parameters are essentially defined by how accurately the weather-impact 
simulator is able to produce outcomes that match the probabilistic forecasts and reflect the real physical 
environment.   
 
Existing weather systems usually provide probabilistic predictions at longer intervals, such as the hourly 
probabilistic convection forecast in the VSREF.  In contrast, the weather-impact simulator can produce 
impact scenarios using a time step resolution based on the FCM decision making needs. For example, 
the simulation can generate impact forecasts at every 15 minutes look-ahead. These generated impact 
forecasts will be consistent with the weather forecast at each hour, and will evolve smoothly through 
the intermediate forecasts.   One advantage of this is that near-term FCM research can be supported 
without needing changes in the temporal resolution of weather forecasts.  
 



Even though we have identified the desired probability weather impacts at certain time steps, 
parameterization still requires additional information in order to refine the model to represent the real 
physical environment.  First, current weather conditions are needed to provide initial conditions to the 
weather-impact simulator.  Second, climatic factors can affect how weather evolves among regions of 
interest.  For example, wind, pressure, and temperature can change from region to region and these 
factors influence storm motion.  As such, this data may provide insightful information on weather-
impact evolution.   
 
Weather forecast resolution is important in determining whether a forecast can be used effectively. This 
includes horizontal grid resolution, number of forecast times, and update frequency. This research will 
help to refine the spatial and temporal resolutions needed to adequately inform the simulation. 
 
Including additional information in probabilistic weather forecasts could be beneficial. Potentially useful 
information may be provided as inputs to the forecasting system but not conveyed in the forecasts. The 
convective probability fields combine the uncertainties in storm location, movement, initiation, growth, 
and decay. Because of this, an area of low probability can be interpreted in many ways.  One 
interpretation could be an area where popcorn convection is likely, and the locations of these small cells 
are unpredictable. An alternate interpretation of the same result may be an area where an organized 
line of thunderstorms is predicted, but the speed of movement is uncertain, or the combination of a 
modest speed inaccuracy with a long forecast time leads to a wide range of possible storm locations. 
Additional forecast information could include the predicted type of storm, characteristics of storm 
movement, and degree of organization. These characteristics may vary with location and forecast times, 
since there may be several storms in the forecast coverage area, and storm properties may evolve with 
the forecast time. Any information that could help the weather-impact simulation generate more 
appropriate and realistic scenarios would be valuable. 
 
Unique and accurate parameterization may be possible if enough historical forecast data is available. 
However, the amount of historical data we currently have is limited. Whether or not current weather 
forecasts provide enough information to permit accurate generation of weather scenarios using the 
proposed simulator is an open question.  It is possible that forecast data limitations will lead us to alter 
our proposed scenario-generation methodology, or to tailor it to different types of forecasts. 
 
 

4. Example: A Parameterized Weather-Impact Model 
 
So far, we have developed a theory for the weather-impact simulator, including formulation and analysis 
of underlying structure and dynamics, and identification of methods and challenges in parameterizing 
the simulator. To further support our development and better evaluate the appropriateness of the 
weather-impact model for use in FCM, we present an example here. In the example, we first choose a 
particular historical day and a geographical region, consisting of high-altitude Air Route Traffic Control 
Centers (ARTCCs, referred to from now on as “Centers”) and sectors, for study. We also decide which 
probabilistic weather-forecast data we will use for the selected area on the selected day based on 
requirements for parameterization. We then parameterize a weather-impact simulator that matches the 
weather-forecast data. Once the weather-impact simulator has been constructed, we can implement 
the simulator, and hence produce a family of stochastic weather-impact scenarios. We organize the rest 
of this section as follows: (1) we list all the accessible data/information required and used for 
parameterization, (2) we give a detailed description of the actual simulator parameterization, with a 



particular focus on identifying challenges in real applications, and show some weather-impact 
simulation results, and (3) we discuss potential uses of simulation results in FCM and possible 
improvements of the simulator parameterization. 
 
We note that a full tutorial on the parameterization method requires a technical understanding of the 
mathematics of the influence model.  For the sake of readability, we do not introduce the influence-
model mathematics in detail here.  Consequently, we largely present the parameterization method at a 
conceptual level rather than in full mathematical detail.  We kindly refer the reader to our tutorial on 
the weather-impact model for the specifics. 
 
 

4.1 Data and Preliminary Processing 
 
As discussed in Section 3, we believe that simulator parameterization primarily requires probabilistic 
weather forecast data (e.g., convection probability or winter-weather probability) on a ground map, and 
over a time span of interest. Although assisting information (e.g. wind direction, ground terrain) may 
yield more accuracy and precision in the simulator, in this first example we focus on a simple model 
construction where such assisting information is not considered. To have some credence as a realistic 
weather-impact simulator, we note that the probabilistic weather forecast data should generally meet 
the following two criteria: 1) the represented weather should have a significant impact on air traffic; and 
2) the forecast should provide enough information on weather dynamics during the selected time span.  
 
Here we consider convective weather for a region that includes the airspace managed by three Centers, 
in particular the Atlanta, Memphis, and Jacksonville ARTCCs (denoted ZTL, ZME, and ZJX respectively) 
during September 26th and 27th, 2010 as our study example. We aim to build the weather-impact 
simulator based on probabilistic weather-forecast data for this example. Specifically, we will use 
probabilistic weather data from an ensemble-forecast product, namely the SPC Short Range Ensemble 
Forecast (SREF), to parameterize the simulator (see (Du et al., 2003) and (Bright and Grams, 2009) for 
more information about SREF). 
 
Before we illustrate how we will use the selected weather product (SREF), let us give a brief overview of 
the relevant aspects of SREF here. SPC SREF is an ensemble weather forecast product which uses a post-
processing method, e.g. (Raftery et al., 2005; Gneiting and Graftery, 2005). Its primary goal is to 
predict/analyze high-impact and severe weather, including thunderstorms, hazardous winter weather, and 
other types of weather that may have a great impact on the air traffic system. Its output is an hourly 
probabilistic weather prediction across the United States, which is updated (generated) every 6 hours 
(03, 09, 15, 21 UTC). For example, below (Fig. 1) is one probabilistic thunderstorm forecast output of 
SREF for the time 11 UTC, 09/26/2010, which was generated at time 09 UTC, 09/26/2010. The spatial 
resolution of this product is 20 km, and the data resolution is one hundredth of a percent. In this figure, 
ten different color shades represent ten different probabilities (from 0.03 to 0.66 with common 
difference 0.07) of having convective weather within the grid square).  
 
In our example development, we will use a set of 25 such hourly probabilistic weather forecasts (from 
time 09 UTC, 09/26/2010 to time 09 UTC, 09/27/2010), and aim to parameterize the weather-impact 
simulator to match these probabilistic weather forecasts. 



 
Figure 1:  SREF Output at 11 UTC, 09/26/2010. 

 

 Desired Influence-Model Simulator: Times, Regions, and States  
 
As introduced above, the influence-model-based weather-impact simulator is a discrete-time Markovian 
model. We would like to develop a model for a full-day time span (starting at time 09 UTC, 09/26/2010, 
ending at time 09 UTC, 09/27/2010). Here, we choose 15 minutes as the discrete time interval of the 
simulator. Thus, the simulator has 97 time steps in our example, with initial condition at time step     
(or time 09 UTC, 09/26/2010). In this first simple example, we will also assume that each airspace region 
has two weather-impact states: full capacity (represented in white in the simulation) and reduced 
capacity (represented in below).  Also, since the weather data contain 25 hourly convective probability 
weather forecasts, the regional weather-impact probabilities of the simulator (i.e., probabilities of low 
capacity due to weather impact) at these time steps (       ,for         ) should match the 
weather-impact probabilities obtained from these forecasts.  
 
In this example, we limit the model to ZTL/ZME/ZJX airspace, both because these three Centers have a 
higher probability of convection according to the data on the day of interest, and because we plan to 
use the simulator as part of a more extensive example of flow-contingency management for Atlanta-
bound traffic on that day (Fig. 2-a). Because of the procedural difficulty of overlaying an actual Sector 
map on the weather-forecast map,  and the complexity in describing influence model sites for a general 
Sector map, we simply assume a grid geometry for the model weather-impact region(see Fig. 2-b). As 
shown in Fig. 2-b, we divide the ZTL/ZME/ZJX centers into 128 (16 by 8) grids (in blue color), each of 
which represents a square area with size ~50 miles by ~50 miles. We believe that the grid size is small 
enough to capture the weather-impact variability that is of importance for traffic flow management, yet 
large enough to meaningfully match and translate the weather-forecast data for this example. As for the 
influence-model-based simulator, each site of the influence network therefore represents a grid square. 
Each site has associated with it at each time a binary weather-impact status, which captures whether 
the corresponding region has nominal or low capacity due to weather.  We also assume that each site of 
the network can be only impacted by its geographically surrounding sites and itself. Such an assumption 
is sufficient to characterize influence from other areas since weather-impact propagation should be 
relatively slow compared to the time-step duration used; this assumption can simplify the 



parameterization process. For example, the top left grid squares can only be influenced by three 
neighboring squares (sites) and itself. We note here that, although some edge sites may receive some 
influence from outside (e.g., the top left site may get some impact from left or above areas), we will not 
consider those situations in this example and instead will capture such influences as local generations of 
weather-impact2. (For this particular example, from the data, we also notice that convection is mostly 
focused inside this region, and hence the influence from outside of the region is likely not very 
significant.) 
 

        
Figure 2:     a. Geographical region of interest;                                          b. Gridded region map. 
 

 
Figure 3: An illustration of the weather-impact model (influence model) parameterization task. Each grid 

square’s weather impact status (capacity level) is influenced by its own past status and that of its eight 
geographical neighbors: this yields an influence structure for each influence-model site (which takes on two 
statuses, H for high capacity and L for reduced capacity), as shown above.  We stress that each possible influence is 
defined by two parameters at each time step: a network influence rate that describes the frequency or chance of 
the particular network interaction, and a local transition matrix whose rows specify the next-status probability of 
the influenced site for each possible current status of the influencing site. 

 
We have thus introduced a structure for the weather-impact simulator, including defining discrete time 
steps and constructing the network structure. Our next task is to parameterize the simulator so that 
certain of its snapshots match the given probabilistic weather information. Before doing this, let us 

                                                           
2
 The arrow direction from one site to another is inverse to the influence direction. 



summarize several aspects of the simulator here (and in the process define relevant terminology). For 

convenience, let us use notation Γ to refer to the underlying network of the simulator, which contains 
128 sites representing the 128 grid squares (labeled as          ), and horizontal/vertical/diagonal 

network edges      3 connecting two sites   and   corresponding to geographically neighboring grid 
squares . The 25 forecast maps from SREF provide probabilistic weather information at 25 snapshot 
times:             . More specifically, at times             , each site is associated with a 
probability of having weather-impact (low capacity due to convection) in the corresponding area, which 
should match weather-impact probabilities obtained from the SREF forecasts. In the following, we use 
the information to parameterize the influence model, by designing the network influence rates (i.e. the 
rate of influence by each site   on neighboring site    which we denote        in coherence with standard 

influence-model terminology, see Fig. 3) and the local transition probabilities (which are captured by 
row-stochastic matrices which we denote as     for each pair of neighboring sites).  

In this example, we define two statuses for each site (or grid area) at each time step, reduced capacity 
due to weather impact and nominal capacity, and use a status-indicator vector       to represent the 

statuses (i.e.        
 
 
  represents reduced capacity and        

 
 
  represents high capacity). 

We use the notation       to represent the probability of having weather-impact (reduced capacity due 
to convection) at time   for site   (and         indicates the probability of not having convection). 
These notations are consistent with the ones defined in our previous work (Xue, 2010a). 
 
 

4.2 Parameterization and Simulation 
 
In this section, a detailed description of how to parameterize the simulator for our example will be 
presented. Two major steps of the parameterization process are: converting weather (i.e. thunderstorm) 
probabilities to weather-impact (i.e. airspace capacity) probabilities, and computing the influence-model 
parameters        and       . Once parameterization has been completed, we will also illustrate 

simulation of the weather-impact model. 
 

 Conversion of ensemble weather forecast to weather-impact forecasts:  
 
It is important to recall that the simulator captures weather impact rather than weather itself. 
Therefore, probabilistic weather forecasts must be converted to predictions of the weather impact on 
the capacity of airspaces and airports at the times when forecasts are available (time-steps 
k=0,4,8,12,…). Here, we use a very simple weather to weather-impact translation.  Prior to discussing 
this simple translation, it’s worth introducing some literature relevant to the problem. Several 
approaches for estimating the impact of weather on airspace capacity have been developed (Davis et al., 
2005; Song et al., 2007; Krozel et al., 2007; Klein et al., 2008; Weber et al., 2005; Martin et al., 2006). 
Much of this research assumes deterministic forecasts. However, at the forecast times needed for FCM 
decisions, deterministic forecasts are not sufficient since many weather outcomes are often possible 
when weather is forecast. Forecasts with probabilistic information that convey the possibility of multiple 
weather outcomes are required.  
 

                                                           
3
       is an ordered pair of sites that indicates that the edge direction is from site   to site  , while the influence direction is 

from site   to site  . 
 
 



Methods for obtaining probabilistic capacity forecasts from probabilistic weather forecasts have also 
been proposed (Mitchell et al., 2006; Michalek and Balakrishnan, 2009).  Broadly, these studies consider 
proposed functional relationships between weather and capacity and aim to characterize probability 
distributions or statistics of capacity from these relationships assuming stochasticity in the forecasted 
weather.  We envision using similar methods, or simple insights derived from these methods, to 
translate probabilistic weather forecasts to weather-impact maps for FCM; however, we stress that the 
resolution and details of weather forecasts (as well as the necessary accuracy for decision-making) may 
differ at the strategic time horizon, so some refinement of this methodology may be needed.  Finally, 
the recent work of Krozel has directly studied weather-impact generation from forecasts, albeit using a 
somewhat heuristic approach. 
 
A brief discussion of geographic structure of the model as it pertains to parameterization is also 
relevant.  Airspace resources can include air traffic control sectors, which motivates representing sectors 
(as an alternative to grid squares) as the regions of interest in the weather-impact model. An advantage 
of using sectors is that sector capacity has been widely studied (EUROCONTROL, 2003; Majumdar et al., 
2005; Stamp, 1990; Song, 2006), and many of the weather impact studies mentioned above focus on the 
impact to sector capacity. One issue is whether the sizes of sectors are large enough to tolerate the 
spatial inaccuracies in weather forecasts at the longer forecast times needed for strategic decisions. The 
fact that the weather impact simulator will produce many impact scenarios can help mitigate this issue, 
but we may also need to consider larger resources such as sector clusters at the longer look-ahead-
times. Airports are also key resources, and the impact of weather on airport capacities is frequently a 
major disruption. Other weather factors besides convection, particularly ceiling and visibility, can have 
major impacts on airport capacities.  We also note that weather-impact may be measured using 
constructs other than capacities, although our focus here is in capacity representation. 
 
In this example, we assume that capacity reduction is simply caused by sufficient presence of convective 
weather. On this basis, we propose an (extremely simplified) computation of weather-impact maps from 
the SREF weather forecasts.  Specifically, we argue that the weather-impact probability for a particular 
grid square at a particular time is equal to the expected convection coverage fraction in the grid square 
at the time, as given by the SREF forecast.  Based on this intuition, we compute the weather-impact 
probability for the grid square as the average of the convection probabilities for SREF points within the 
grid square. Specifically, we note that each grid square contains 100 SREF forecast probability points; we 
simply average these 100 probability values to obtain the weather-impact probabilities. We note that 
we obtain 128 such probability values (for the 128 grid squares) for each time, and 25 sets of these 
values in total (for the 25 forecasts). Here, we use notation       to represent the weather-impact 
probabilities at time           , for each site  . Once we have established on the conversion from 
weather to weather impact, the probabilistic weather forecast data can be applied to the 
parameterization process. 
 

 Influence-Model Parameterization:  
 
Let us rephrase the parameterization task as follows. We consider the weather-impact simulator as 
described above. Our goal is to design the network influence rates        and the state transition 

probability matrices       , such that   
 
     

 
    at the time steps                As stressed in 

(Xue, 2010a), we may have quite a bit of freedom in parameterizing the influence model, given the 
limited available information (only local statistics, and only at some time-steps). The parameterization 
will be unique only when certain very special network structures are assumed. In our example, since the 



simulator is constructed in a fairly general form, we may expect more than one parameterization 
solution, and in fact that is the case here.  Note that we allow the parameters to be time-varying, which 
yields even more freedom in design. In other words, for each hourly time span, we aim to design a new 
set of parameters such that the two snapshots at the beginning and the end match the desired ones. For 
example, between     and    , we individually design                  and                , such 

that given        
     

       
 , we have        

     
       

 ; while for other hourly time spans, we may 

obtain different values for         and       . The time-varying parameters also have the physical 

interpretation that the interactions among all sites may change as the actual weather environment 
changes. Here, we only present a parameterization process for a single hourly time span (say between 
time step   and       and explain how to design the parameters          and          for 

       .  Such a process can be simply repeated for other hourly time spans.  
 
In introducing the parameterization process, it is important to highlight that a family of designs for the 
network interactions          and the local influence matrices          match the snapshot 

probabilities: we have considerable freedom to choose among possible designs that achieve the 
snapshot weather-impact probabilities obtained from the SREF forecast.  Our philosophy is thus to 
identify a family of appropriate designs, and then choose one among them (by tuning certain 
parameters) that matches other qualitative features of the weather impact – most notably, the extent of 
spatial and temporal correlation in the weather-impact propagation.  Specifically, we will argue in the 
ensuing discussion that, for an appropriately-chosen set of network interactions parameters, the local 
influence (transition) matrices can be tuned to set the extent of spatial and temporal correlation.  Let us 
now delve into the model parameterization based on this philosophy.  The approach that we take is 
connected with the parameterization methods described in (Xue, 2010a), and the reader is referred 
there for more details and justifications of influence-model parameterization methods; however, our 
work here considerably extends the effort in (Xue, 2010a), especially in the sense of deciding how to 
select among multiple possible valid parameterizations.  For the sake of simplicity, we do not include all 
the mathematical details (which are considerable), but aim to give a sufficiently-detailed presentation to 
provide the reader with insight into the methods. 
 
To begin this parameterization, in this example we first compute the 3 snapshots in between that will be 
approximately met by the parameterization. We know that       and         are fixed (since 

 
 
     

 
    and  

 
       

 
     ), and weather generally has a slow motion relative to the time 

axis of interest (hence weather impact does also). Therefore, based on the time differences, we assume 
the snapshots in between to be a linear combination of both known impact forecasts, or  

                               , or                                  
                               , or                                  
                                 or                                . 

We note here that, although the above three values are not constrained to be the actual probabilities 
for site  , comparing the difference between two consistent time steps can still provide useful 
information for the simulator design. Generally, we set the network influence probabilities (rates) to 
reflect trends in these probabilities (and hence to achieve an evolution of the local weather-impact 
probabilities that match the desired ones), and then set the state transition matrices to achieve the 
temporal and spatial correlation that is desired. Specifically, the state transition matrices can be set to 
achieve different degrees of memory of the current state on the past ones (i.e. the degree to which 
        is dependent on the past), which decides the level of spatial and temporal correlation.  
 



Let us now describe computation of the network influence rates for various sites in the influence 
network, and then describe the computation of the local state transition matrices. First of all, let us 
describe how to parameterize for the boundary grids (i.e. grids that are adjacent to outside region). For 
simplicity, we set             for all boundary sites, implying that each boundary site can only 
influenced by itself. As for each        , we compare the two values           and        : 

if                    we set               and             
                 

           
; otherwise, 

we set             
       

         
 and               . It is easy to see that this solution yields local 

evolution of the boundary sites’ weather impact (with the motivation that this weather impact reflects 
generation of weather and/or imposition from outside), while the state transition matrices have been 
designed to achieve maximum temporal correlation of the weather impact at these sites. 
 
The interior sites have a more complex design rule in our example since each site can be influenced by 9 
sites (including itself). Again, here we compare the two values           and        :  
1) For the simple case that                  , we assume that weather (hence weather 

impact) does not evolve spatially between time       and time    , and set           . 
2) For the much more common case that                  , we need to consider several sub 

cases as follows.  
2-a)   For each interior site  , if all its 9 neighboring sites have the same probability of having a low 
capacity at time      , and         sites of them still have the same probability at time 
   , we then set the influence rates from these   neighboring sites as    .  
2-b)   Otherwise (and in the most common case), we determine the influence neighbors and the 
corresponding influence rates based on how the probabilities change between time       and 
time     for all 9 sites: a weighted influence is determined for each neighbor, that reflects 
whether or not the neighbor’s current weather impact probability is higher or lower than the 
desired probability at site  , and based on the trends of these probabilities.  

Once the influence rates are fixed, we design the state transition probabilities according to the changes 
in the weather-impact probabilities. In fact, it is straightforward to identify a family of local transition 
matrices that achieve the desired weather-impact probabilities at the next step (independent of the 
network-influence rate selection).  These local influence matrices can then be tuned to achieve varying 
degrees of spatial and temporal correlation (ranging from complete independence from the past to the 
strongest possible correlation permitted by the probability evolution). In this example, we have tuned 
the state transition matrices simply based on a visual comparison with typical convective weather.  In 
future work, we expect to determine typical extents of spatial and temporal correlation for storm-
system types, and to choose the state-transition matrices based on these. 
 
In sum, the whole parameterization process is to first set the influence rates and then come up with 
certain feasible state transition matrices such that the desired weather-impact probabilities are 
matched and desired spatial/temporal correlation is achieved.  
 

 Simulation results:  
 
Once we have parameterized the weather-impact simulator between the initial time 0 and time step 96, 
we can use it to generate weather-impact scenarios. Each individual simulation run will generate one 
weather-impact scenario (independent of scenarios generated from other runs). Here, we will present 
some simulation results (illustrations of generated scenarios) based on the parameterization. 
 



In our example, the simulator generates one weather-impact scenario at each time, which contains 97 
snapshots (from time step 0 up to time step 96). At these time steps             , the generated 
snapshots should statistically match the given weather-impact probabilities (i.e.                     ): 
that is, the probability of each site having weather impact (low capacity) should match those obtained 
from the forecasts. Since we allow time-variant parameters for the influence model, we individually 
parameterize the model for each hourly time span. However, for the simulation, since we want to 
capture a temporal and spatial correlation, we need to process the full-day time span together. First, we 
need to generate an initial weather impact at time 0 based on the give       (e.g. simply a realization for 
each grid square based on a probability distribution). Then, we need to generate each site’s next status: 

1) for each site  , we choose an influence neighbor based on the current influence rates, as site  ’s 
copying source; 2) given the chosen neighbor’s current status, we compute site  ’s status probabilities 

at next time step, based on the state transition matrix from this neighbor to site  . By repeating this 
process, we eventually obtain a sequence of 97 weather impacts (i.e. capacity statuses) for the whole 
region.  
 
For example, Fig. 4 contains two given probabilistic weather forecasts (15 UTC, 16 UTC) for ZTL/ZME/ZJX 
centers, with a 1h time difference. For our simulator model, the corresponding time steps are from 0 to 
4. Fig. 5 shows these 5 generated weather-impact snapshots, for one simulation run. The snapshots at 
time steps 0 and 5 statistically match the weather forecasts at times 15 UTC and 16 UTC, respectively, 
but with a spatial and temporal correlation between each other.  
 

 
a) 15 UTC, 09/26/2010;                                            b) 16 UTC, 09/26/2010. 

Figure 4: Weather probability information above ZTL/ZME/ZJX centers. 
 



 
a) time step 0;                                                                    b) time step 1; 

 
c) time step 2;                                                                    d) time step 3; 

 
                                d) time step 4. 

Figure 5: Five snapshots (within one hour) of a scenario from one simulation example. 
 
It is also instructive to compare the weather-impact predictions of multiple different scenarios at a 
particular time.  In Fig. 6, we show three possible weather-impact scenarios at time step 30. The three 
scenarios show significant differences, but have similar weather-impact patterns (that match forecast 
data) and display some spatial correlation. 
 



 
Figure 6: Three different weather-impact scenarios at time step 30. 

 
In sum, we have presented a specific example illustrating the construction of a weather-impact 
simulator. We note here that, other atmospheric or terrain information may help to reduce the solution 
space and refine the simulator. For example, we may obtain more realistic influence rates if information 
about air motion is used in parameterization. However, the example in its current form is quite 
promising in that it shows the spatial and temporal correlations among weather-impact throughout the 
airspace, as achieved by a Markovian generation process, which also matches currently-available 
probabilistic weather forecasts. Moreover, the simulator can also generate snapshots at a strategic time 
horizon (i.e. 15 min interval), which weather forecasts cannot provide. Also, we stress that the influence 
model permits fast generation of scenarios, as well as fast computation of important statistics (e.g., 
correlation between weather-impact at two critical locations). 
 
In concluding, let us reiterate what we have achieved through construction of the weather-impact 
simulator (for this example and more broadly), and also stress that much is left to be done.  We believe 
that the example developed here illustrates why the weather-impact simulator is so promising for air 
traffic management: fundamentally, it allows us to generate alternate realistic realizations of a weather 
events impact, and to quickly analyze statistics of these weather-impact events; this information, if even 
roughly accurate, may inform a wide range of decision-making tasks in the airspace system.  Yet, even as 
the example shows promise, it highlights that parameterizing the weather-impact model to generate 
realistic scenarios (and to validate/evaluate whether they are realistic) is a challenging and open-ended 
endeavor.  To this end, and more broadly to properly leverage the weather-forecasting capabilities in 
the air traffic management arena, it is essential that the weather-forecasting community advise and 
collaborate with traffic-management engineers on weather-impact modeling, and also that extensive 
data analysis be performed to validate and evaluate promising methodologies.  We hope that this article 
begins to foster such discourse and evaluation. 
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