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1. Introduction 

A hybrid nudging-EnKF (HNEnKF) approach has 
been developed and tested in the Lorenz three-variable 
model (Lei et al. 2011a) and a two-dimensional (2D) 
shallow water model (Lei et al. 2011b) for dynamic 
analysis and numerical weather prediction.  In this paper 
it is applied to a three-dimensional mesoscale model 
using real data.   

The HNEnKF combines the EnKF (Evensen 1994; 
Houtekamer and Mitchell 1998) and observation 
nudging (Stauffer and Seaman 1990; Stauffer and 
Seaman 1994) to take advantage of the strengths of 
both methods while avoiding their individual 
weaknesses.  It applies the EnKF gradually in time via 
nudging-type terms to achieve better temporal 
smoothness and inter-variable consistency and reduce 
the data insertion shocks that often occur with 
intermittent data assimilation methods. The HNEnKF 
uses flow-dependent and time-dependent hybrid 
nudging coefficients based on the gain matrix of the 
EnKF rather than ad-hoc nudging coefficients based 
largely on past experience (e.g., Stauffer and Seaman 
1994; Schroeder et al. 2006).   It also extends the 
traditional observation nudging coefficients (Stauffer and 
Seaman 1994) to include zero off-diagonal elements in 
the nudging magnitude matrix to improve the inter-
variable influences of the innovations and the dynamic 
consistency. 

Building on the idealized model results using 
observing system simulation experiments (OSSEs) in 
Lei et al. (2011a, b), we apply the HNEnKF to real 
surface and rawinsonde data in the three-dimensional 
Weather Research and Forecast (WRF) model 
(Skamarock et al. 2008).   The EnKF and HNEnKF 
calculations are performed within the Data Assimilation 
Research Testbed (DART, Anderson et al. 2009).  As in 
our previous papers, the HNEnKF is again compared to 
the EnKF and nudging applied separately, but here we 
perform a real-data study with truly independent 
verification of the data assimilation results against 
surface tracer data. 

A 48-h simulation of the Cross Appalachian Tracer 
Experiment (CAPTEX-83, Deng et al. 2004) case from 
1200 UTC 18 September 1983 to 1200 UTC 20 
September 1983 is conducted.  Both surface and 
rawinsonde observations are assimilated.  The hourly 
meteorological outputs are then used to drive the 
Second-Order Closure Integrated Puff (SCIPUFF, 
Sykes et al. 2004) atmospheric transport and dispersion 
(AT&D) model.  The observed surface tracer 
concentration data is then used as an independent   
verification of the data assimilation approaches. The 
SCIPUFF-predicted surface tracer concentrations driven 
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by the hourly dynamic analyses from the set of data 
assimilation experiments are compared statistically to 
the observed surface tracer data. 

In section 2, the methodology of the HNEnKF 
approach is briefly described.  Section 3 presents the 
details of the experiment design, including description of 
the model, observations, and the parameters used in 
the data assimilation experiments.   An overview of the 
CAPTEX case and tracer study is presented in section 4.  
Section 5 discusses the results from the different data 
assimilation experiments for the meteorology, insertion 
noise and surface tracer verification.  The conclusions of 
the study are summarized in section 6. 
 
2. Methodology for the HNEnKF approach in 
WRF/DART 
 

The procedures of the HNEnKF approach follow Lei 
et al. (2011b).  A schematic of the HNEnKF approach is 
shown in Fig. 1.  We start with an ensemble of N 
background forecasts that will be updated by the EnKF 
(called the “ensemble state”), and a single forecast that 
will be updated by the hybrid nudging-type terms (called 
the “nudging state”).  The following five steps are 
repeated for each data assimilation cycle: 1) Compute 
the hybrid nudging coefficients using the ensemble 
forecast via the EnKF algorithm.  2) Integrate the 
nudging state by continuously applying nudging with the 
hybrid nudging coefficients.  3) Update each ensemble 
member of the ensemble state using the EnKF.  4) Re-
define the ensemble mean to be the analysis of the 
nudging state by re-centering the ensemble around the 
nudging state at the observation time while retaining the 
ensemble spread. 5) Integrate the ensemble state and 
the nudging state forward to the next observation time. 

Equation (1) shows the full set of model equations 
having the additional nudging terms that are used to 
gradually relax the model state towards the observation 
state.   
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where x  and f  are the state vector and standard 

forcing function of the system, o
x  is the observation 

vector, G is the nudging magnitude matrix, and 

ws
and wt

are the spatial and temporal nudging 

weighting coefficients.  The spatial and temporal 
nudging weighting coefficients are used to map the 
innovation in observation space and time to the model 

grid cell and time step.  The product of G, ws
and wt

is 

defined here as the nudging coefficient.  While the ws
 

in the shallow water model in Lei et al. (2011b) was two-
dimensional (i.e., no vertical dimension), the ws

 in WRF 

is three-dimensional with variations in both the 
horizontal and vertical directions. 
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The flow-dependent hybrid nudging coefficients 
used in the HNEnKF approach are computed from the 
ensemble forecast, and are elements of the EnKF gain 
matrix normalized by the sum of the temporal nudging 
weighting coefficient over half of the assimilation time 
window.  The flow-dependent hybrid nudging coefficient 
is then described by Eq. (2): 
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where K is the EnKF gain matrix, t  is the time step, t  
is the model time, ot  is the observation time, and 

N  
is 

the half-period of the nudging time window.  The 
temporal nudging weighting coefficient wt

 

follows the 

trapezoidal function defined by Stauffer and Seaman 
(1990). 

It is important to note that the hybrid nudging 
coefficients are computed from Eq. (2); that is, they 
come directly from the EnKF that contains information 
from the flow-dependent background error covariances.  
Thus there is no need to specify the nudging strength 
(i.e., elements in the nudging magnitude matrix G) or 

the spatial nudging weighting coefficient ws
 in either the 

horizontal or vertical directions.  Substituting the state 
vector x  by a vector comprised of u- and v- wind 
components, potential temperature and mixing ratio on 
every model grid point, Eq. (1) becomes the governing 
equations of WRF including the hybrid nudging terms 
with their coefficients defined by Eq. (2).  It is also 
important to note that the hybrid nudging terms include 
not only the standard diagonal terms (i.e., the 
innovations in u in the u-equation, and the innovations in 
v in the v-equation, etc.), but also the off-diagonal terms 
(i.e., innovations in u in the v-equation, and the 
innovations in v in the u-equation, etc.).   This statistical 
inter-variable influence of the innovations from the EnKF 
is included in the model’s dynamic relaxation terms to 
gradually and continuously force the model towards the 
observations, thereby reducing the error spikes and 
dynamic imbalances often produced by intermittent 
assimilation methods (e.g., Lei et al. 2011a, b). 

 
3. Model configurations and experiment design 
3.1 WRF/DART model description 
 

In this study, the WRF-ARW version 3.1.1 
(Skamarock et al. 2008) is used to test the HNEnKF 
approach.  The model simulation has horizontal grid-
spacing of 12 km on a 208×190 horizontal grid with 33 
vertical levels and a model top at 100 hPa.  The WRF 
model domain is shown in Fig. 2.  The model is 
configured to use the longwave Rapid Radiative 
Transfer Model (RRTM: Mlawer et al. 1997), the 
shortwave Dudhia radiation scheme (Dudhia 1989), and 
the thermal diffusion land-surface scheme.  Several 
options are used for model microphysics, convective 
parameterization and planetary boundary layer (PBL) 
turbulence, as outlined in Table 1, and discussed in 
section 3.3. 

The simulation starts at 1200 UCT 18 September 
1983, and continues for 48 hours.  The NCEP / NCAR 
Global Reanalyses are used to generate the initial 
conditions (ICs) and lateral boundary conditions (LBCs) 
for the WRF model.  Because the NCEP / NCAR Global 
Reanalyses have a coarse resolution of 2.5°×2.5°, the 
ICs and LBCs generated by the reanalyses are 
enhanced by a modified Cressman objective analysis 
(Benjamin and Seaman 1985) within a new code called 
OBSGRID in the WRF Pre-processing System (WPS).    

The DART (Anderson et al. 2009) is used to 
perform the data assimilation calculations of the EnKF, 
and it is able to interface directly with WRF.  The DART 
has a variety of algorithms for the ensemble filters, such 
as ensemble adjustment Kalman filter (EAKF; Anderson 
2001), ensemble Kalman filter with perturbed 
observations (Evensen 1994), and particle filter (Snyder 
et al. 2008), to name a few.  The EAKF, the default filter 
in DART, is chosen here.  The EAKF is a deterministic 
ensemble square root filter, which updates the 
probability distribution of a model state given the prior 
estimate of the model state’s probability distribution, the 
observations and their associated errors.  The prior 
probability distribution of the model state is obtained 
from the statistics of an ensemble that incorporates 
flow-dependent background error covariance 
information.  For simplicity, the EAKF is called EnKF in 
the following discussions, since the EAKF is one kind of 
EnKF. We also modified the WRF/DART code to apply 
the new HNEnKF approach. 
 
3.2 Observations and verification techniques 
 

Three-hourly WMO surface observations and 
twelve-hourly rawinsonde observations are assimilated 
from 1200 UTC 18 September 1983 to 1200 UTC 20 
September 1983.  For the ensemble-based experiments, 
the observation error variances of wind and temperature 
are adapted from WRF 3DVAR (Baker et al. 2004).  The 
observation error variance for relative humidity is set to 
10% of the saturated specific humidity. 

Ideally we would want to withhold some of the 
observations for independent verification of the data 
assimilation methods.  However, this case had no 
special additional meteorological observations.  Thus to 
evaluate and compare the different data assimilation 
methods on the meteorology, the analysis closeness-of-
fit statistics (posteriors) to the assimilated observations 
are first computed.  Then three-hourly forecasts (priors) 
of each data assimilation method are verified against 
the observations that will be assimilated during the next 
data assimilation cycle.   

Moreover, an independent verification of the data 
assimilation approaches is performed by using the 
hourly WRF experiment outputs in the SCIPUFF AT&D 
model (Sykes et al. 2004) to predict surface tracer 
concentrations and then verify them against the 
observed surface tracer concentration data.  In this way, 
the quality of the analyses produced by each data 
assimilation method is assessed using the SCIPUFF 
predictions.  The 12-km SCIPUFF domain is shown as 
the inner black frame within the 12-km WRF domain in 
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Fig. 2. The SCIPUFF simulation starts at 1700 UTC 18 
September 1983, and continues for 24 hours.  The 
observed surface tracer concentration data is available 
at 2200 UTC 18 September 1983, 0400 UTC 19 
September 1983, 1000 UTC 19 September 1983, and 
16 UTC 19 September 1983.  The surface tracer 
sampling sites and the measurements at 2200 UTC 18 
September 1983 are shown in Fig. 3. 
 
3.3 Ensemble configurations 
 

Two types of ensembles are configured for the 
ensemble-based data assimilation experiments.  The 
first ensemble, which is called the IC ensemble, is 
produced by adding perturbations to the ICs and LBCs 
interpolated from the NCEP / NCAR global reanalyses 
and enhanced by OBSGRID.  The perturbations are 
drawn from a multivariate normal distribution by use of 
the WRF-3DVAR (Baker et al. 2004).  This ensemble 
uses the first model physics configuration in Table 1: the 
WSM 3-class microphysics scheme (Hong et al. 2004), 
the Kain-Fritsch cumulus parameterization scheme 
(Kain and Fritsch 1990) and the Mellor-Yamada_Janjić 
(MYJ) turbulent kinetic energy (TKE) PBL scheme 
(Janjić 1994). This type of ensemble is then constructed 
using both 24 and 48 members.  

The second type of ensemble also explores the 
sensitivities of the ensemble-based data assimilation 
methods to the physics (PH) configuration, and it is 
called the ICPH ensemble.  The eight different physics 
configurations shown in Table 1 are applied. Besides 
the physics schemes used in the IC ensemble, the Lin 
et al. microphysics scheme (Lin et al. 1983), Betts-
Miller-Janjić convective scheme (Betts and Miller 1986; 
Janjić 1994), and the Yonsei University (YSU) PBL 
scheme (Hong et al. 2006) are also used.  Three IC 
ensemble members are generated the same way as in 
the IC ensemble for each physics configuration to 
produce the 24-member ICPH ensemble.  For the 48-
member ICPH ensemble, six IC ensemble members are 
generated the same way as in the IC ensemble for each 
of the eight physics configurations.   
 
3.4 Experiment design 

 
The complete set of data assimilation experiments 

is defined in Table 2.  Experiment CTRL has no data 
assimilation throughout the 48-h period.  The FDDA 
experiment uses observation nudging (Stauffer and 
Seaman 1994; Deng et al. 2009) throughout the WRF 
simulation period to gradually relax the model state u-
component and v-component winds, potential 
temperature and mixing ratio towards the observations.  
The major parameters used by FDDA are summarized 
in Table 3. The nudging strength is specified to be 4× 
10

-4
 s

-1
.  Standard spatial and temporal weighting 

functions (Stauffer and Seaman 1994; Schroeder et al. 
2006) are used for the observation nudging.  The 
horizontal radius of influence varies from 67 km at the 
surface, to 100 km above the surface, to 200 km at 500 
hPa and levels higher than 500 hPa (Schroeder et al. 
2006).  The horizontal weighting function also varies 

with the difference between terrain elevation at the 
observation site and that at the surrounding grid points 
(e.g, Stauffer and Seaman 1994).  The vertical 
weighting function used to spread surface data above 
the surface follows Rogers et al. (2011).  For the stable 
PBL model regimes, the vertical weighting function is 
1.0 from surface to 50 m above ground level (AGL), and 
then it linearly decreases to 0.0 from 50 m to 100 m 
AGL.  For the unstable PBL regimes, the vertical 
weighting function is 1.0 from the surface through the 
model PBL depth, and then it linearly decreases to 0.0 
from the PBL top to 50 m above the PBL top.  The half-
period of the time window is 1 hour for the surface data 
and 2 hours for the rawinsonde data.   

The EnKF experiments use the default EnKF in 
DART to assimilate the wind, temperature and mixing 
ratio observations.  Experiments EnKFIC24 and 
EnKFIC48 use the 24-member and 48-member IC 
ensembles, respectively.  Experiments EnKFICPH24 
and EnKFICPH48 use the 24-member and 48-member 
ICPH ensembles, respectively.  The HEnKF 
experiments are single-model experiments that use the 
HNEnKF approach to assimilate the wind, temperature 
and mixing ratio observations.  The HEnKFIC24 and 
HEnKFIC48 use the 24-member and 48-member IC 
ensemble, and HEnKFICPH24 and HEnKFICPH48 use 
the the 24-member and 48-member ICPH ensemble.  

The major data assimilation parameters for 
Experiments EnKF and HEnKF are also summarized in 
Table 3. As discussed above, the hybrid nudging 
coefficients of HEnKF, which are the product of G and 

ws
, are computed directly from the EnKF; thus there is 

no need to specify the nudging strength and spatial 
weighting function for the HEnKF.  The half-period 
nudging time window of HEnKF is specified the same as 
that in the FDDA.  Both the EnkF and HEnKF 
experiments use error covariance localization to avoid 
the unrealistic error correlations at larger distance 
scales and filter divergence.  The ensemble error 
covariance localization is applied following Gaspari and 
Cohn (1999).  A fifth-order correlation function is 
performed in the three-dimensional physical space.  
Two parameters, one for the horizontal cutoff distance 
and the other for the vertical cutoff distance, are used to 
control the error covariance localization scale.  The 
horizontal cutoff distance is defined to be 533 km, which 
is the same radius as the first scan used in the modified 
Cressman objective analysis in OBSGRID based on the 
rawinsonde spacing in the United States.  The vertical 
cutoff distance is set to 150 hPa.  Finally, adaptive error 
covariance inflation (Anderson 2007) is also used to 
reduce filter error and avoid filter divergence for the 
ensemble-based data assimilation experiments.  The 
values of the adaptive error covariance inflation are 
computed by using a hierarchical Bayesian approach 
and the same assimilated observations.  
 
4. The CAPTEX-83 case 

 
The 18-20 September 1983 episode from CAPTEX 

is chosen as the test case for the HNEnKF in 
WRF/DART.  This mid-latitude cyclone case is widely 
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used for air-quality and regional transport studies (e.g., 
Deng et al. 2004; Deng and Stauffer 2006).  This case 
initially features a large anticyclone centered over the 
Mid-Atlantic coast.   To the northwest of the high 
pressure system, a cold front and a warm front 
propagated quickly through the western Great Lakes 
with areas of showers and thunderstorms varying in 
intensity and location through the period.  The locations 
of the fronts at 2200 UTC 18 September are shown in 
Fig. 3, along with the surface tracer network 
measurements at this time.  The cold front is especially 
important since it tends to define the western edge of 
the tracer plume through the period. 

For this 18-19 September 1983 episode, 208 kg of 
the perfluorocarbon tracer gas (C7F14) were released at 
ground level at the release site Dayton, Ohio, denoted 
by R in Fig. 3.  The release period was 1700-2000 UTC 
18 September.  The tracer cloud reached the lower 
Great Lakes by 0000 UTC 19 September.  By 1200 
UTC 19 September, the cold front had decelerated and 
began to push into northern New York from Lake 
Ontario.  By 0000 UTC 20 September, the cold front 
pushed eastward into central Maine.  The tracer release 
moved northward and eastward ahead of the advancing 
cold front. 
 
5. WRF/DART Results 
 

In this section, we first perform a statistical 
evaluation of the dynamic analyses and three-hourly 
forecasts produced by the set of data assimilation 
experiments (Table 2) using the meteorological data for 
wind speed, wind direction, temperature and relative 
humidity.  Then we assess the results of the various 
data assimilation methods for temporal smoothness and 
the creation of insertion noise within the model.  Finally, 
we perform an independent verification of the dynamic 
analyses using the AT&D model and the observed 
surface concentration tracer data.     
 

5.1 Evaluation using meteorological data 
 

The dynamic analyses created by the set of data 
assimilation experiments for the CAPTEX case use 
standard three-hourly surface data and twelve-hourly 
rawinsonde data.   The fit-to-observation statistics 
(posteriors) at each analysis time will be discussed first.  
Then the three-hourly forecasts (priors) launched from 
each analysis following data assimilation will be verified 
against the observations available for the next three-
hour cycle of data assimilation.   Examination of the 
priors will indicate the ability of the model to retain the 
assimilated information from the previous cycle. 

Figure 4 shows the average RMS errors of the 
posteriors for the set of experiments for all layers over 
the 48-h period for wind speed, wind direction, 
temperature and relative humidity.  All data assimilation 
experiments produce smaller average RMS errors for 
the posteriors than the CTRL.  Note that Experiments 
CRTL and FDDA do not use an ensemble and thus their 
statistics are the same for each ensemble group.  For 
the IC24 experiments (IC ensemble with 24 members), 

Experiment FDDA has the smallest RMS errors for all 
four variables; that is, the WRF simulation using 
observation nudging FDDA shows the closest fit to the 
assimilated observations of all the experiments.  The 
HEnKFIC24 has larger RMS errors than the FDDA, but 
smaller RMS errors than the EnKFIC24 for wind speed, 
wind direction, temperature and relative humidity.  Thus 
the HEnKFIC24 improves the fit-to-observation statistics 
compared to the EnKFIC24, although it has larger RMS 
errors compared to the FDDA.     

The average RMS errors of the posteriors for the 
experiments including multi-physics ensemble members 
are shown by the group ICPH24 in Fig. 4.  For the wind 
speed and wind direction, the FDDA has the smallest 
average RMS errors, and the HEnKFICPH24 has lower 
average RMS errors than those of the EnKFICPH24.  
For the temperature and relative humidity, the 
EnKFICPH24 has similar average RMS errors to the 
FDDA, and both the FDDA and EnKFICPH24 have 
lower average RMS errors than the HEnKFICPH24. 

Comparing the average RMS errors of the group 
ICPH24 to the group of IC24, we see that EnKFICPH24 
and HEnKFICPH24 have similar average RMS errors 
for wind speed and wind direction to the EnKFIC24 and 
HEnKFIC24, respectively.   For temperature and relative 
humidity, the EnKFICPH24 and HEnKFICPH24 have 
smaller RMS errors than the respective IC ensemble 
experiments, and the reduction of the average RMS 
error of the EnKFICPH24 is larger than that of the 
HEnKFICPH24.  Thus the addition of the multi-physics 
ensemble members in the ICPH ensemble improves the 
fit-to-observation statistics for the mass fields in the 
EnKF and HEnKF compared to the IC ensemble, and 
especially so for the EnKF. 

The average RMS errors of the posteriors of the 
experiments with the increased ensemble size of 48 
members are shown by the groups IC48 and ICPH48 in 
Fig. 4.  The relative results comparing EnKF and HEnKF 
are very similar to those reported using the 24 ensemble 
members.  The HEnKF has an advantage in the fit-to-
observations over the EnKF, and the inclusion of the 
multi-physics ensemble members improves the 
posteriors of the mass fields in both EnKF and HEnKF, 
with a larger improvement in the EnKF.  The increase of 
ensemble size from 24 to 48 slightly improves the 
average RMS errors of the EnKF and HEnKF for both 
the IC and ICPH ensembles. 

Figure 5 shows the average RMS errors of the 
priors of the set of experiments for wind speed, wind 
direction, temperature and relative humidity.  All data 
assimilation experiments produce smaller average RMS 
errors in the priors than the CTRL, except for the wind 
direction priors of the EnKF experiments.  For the IC24 
group of experiments, the three data assimilation 
experiments produce very similar average RMS errors 
for wind speed.  The HEnKFIC24 and FDDA have 
slightly smaller average RMS errors of wind direction 
than the CTRL, and the EnKFIC24 has even larger 
average RMS error of wind direction than the CTRL.  
The HEnKFIC24 and EnKFIC24 have similar average 
RMS errors for temperature, and they both have smaller 
average temperature RMS errors than the FDDA.  The 
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HEnKFIC24 has smaller average RMS errors of relative 
humidity than both EnKFIC24 and FDDA.  Therefore, 
the HEnKFIC24 produces similar or better three-hourly 
forecasts than EnKFIC24 for the wind and mass fields.  
The HEnKFIC24 also improves the three-hourly forecast 
of the mass fields compared to the FDDA, and has 
similar RMS errors to the FDDA for the wind field. 

For the group of ICPH24 experiments, the 
comparisons among the three data assimilation 
experiments of the average wind speed and wind 
direction RMS errors are consistent with those from the 
group of IC24 experiments.  For the mass fields, the 
EnKFICPH24 has slightly smaller average RMS errors 
than the HEnKFICPH24, while both of them have 
smaller average RMS errors than the FDDA.  Compared 
to the IC ensemble, the addition of multi-physics 
ensemble members in the ICPH ensemble slightly 
improves the three-hourly forecast of the temperature 
and relative humidity of the EnKF, and the EnKF 
forecasts for the mass fields are improved compared to 
the HEnKF, which is consistent with the posteriors. 

When the ensemble size increases from 24 to 48 
members, the comparative results of the priors from the 
48 ensemble member experiments are generally the 
same as those for the 24 ensemble member 
experiments.  The increase of ensemble size slightly 
improves the average RMS errors of the priors of the 
EnKF and HEnKF for both the IC and ICPH ensembles.  
 
5.2 Evaluation of temporal smoothness and 
insertion noise 

 
To explore the temporal smoothness and potential 

for insertion noise and dynamic imbalance related to 
intermittent data assimilation methods, we examine the 
domain average absolute surface pressure tendency. 
The magnitude of the surface pressure tendency is 
often used to quantify model noise in a mesoscale 
model following data insertion or model initialization 
(e.g., Chen and Huang 2006).   Figure 6 shows the 
evolutions of the domain average absolute surface 
pressure tendency for Experiments FDDA, HEnKFIC24, 
and each ensemble member of Experiment EnKFIC24 
and the ensemble mean.  It is clear that the EnKF has 
much higher noise levels than both the FDDA and 
HEnKF when the three-hourly observations are 
assimilated, as shown by both the individual ensemble 
members and the ensemble mean.  The noise levels of 
the EnKF are even higher at the twelve-hourly times 
when both surface observations and rawinsonde data 
are assimilated than the other three-hourly times when 
only surface observations are assimilated.  Therefore, 
the more observations assimilated by the EnKF, the 
higher the noise level produced by the intermittent EnKF.  
These spurious high-frequency oscillations decrease 
quickly with time, but the noise levels of the EnKF are 
still higher through the 48-h period than those of the 
FDDA and HEnKF.    

It is important to note that the HEnKF, similar to the 
FDDA but using flow-dependent and time-dependent 
error covariances from the EnKF, does not show large 
spikes or discontinuities in surface pressure tendency 

as the EnKF.  These spikes can be greatly reduced by 
using a digital filter (e.g., Lynch and Huang 1992), but 
the digital filter can also smooth out physically realistic 
model-generated high-frequency motions.  The HEnKF 
does not require any digital filtering and shows 
temporally smooth and better balanced model solutions 
following the data insertions, which is consistent with the 
results of applying the HEnKF in the shallow water 
model (Lei et al. 2011b).  

A comparison of the data insertion noise levels for 
the EnKF and HEnKF when using the 24-member IC 
ensemble versus the 24-member ICPH ensemble is 
shown in Fig. 7.   The evolution of the ensemble mean 
of the domain average absolute surface pressure 
tendencies from Experiment EnKFICPH24 is compared 
to that of EnKFIC24 in Fig. 7a.  The noise levels of the 
EnKFICPH24 at the three-hourly observation times are 
even higher than those of the EnKFIC24.  However, the 
noise levels of the HEnKFICPH24 are very similar to 
those of the HEnKFIC24, as shown by Fig. 7b.  Thus 
adding multi-physics ensemble members increases the 
already high noise levels of the EnKF, while it has very 
little impact on the low noise levels of the HEnKF.   
Similar results are obtained when the ensemble size is 
increased from 24 to 48 members (not shown).  
Therefore, the advantages shown in the previous 
section for the meteorological fields from the HEnKF 
compared to the EnKF are also accompanied by much 
lower noise levels following the data assimilation of the 
HEnKF compared to the EnKF.   
 
5.3 Evaluation using independent surface tracer 
data 
 

An independent verification of the dynamic 
analyses produced by the set of data assimilation 
experiments (Table 2) is performed here by comparing 
the predicted SCIPUFF surface tracer concentrations to 
the observed CAPTEX-83 surface concentration data. 
The minimum threshold used for defining “nonzero” 
concentrations for the predicted and observed surface 
tracer concentration field is set to 3.0 fl/l (e.g., Lee et al. 
2009).  This threshold value is three times the minimum 
value detected by the sensor.   

The total numbers of hits, misses and false alarms 
composited over the 24-h tracer study period for the set 
experiments are shown in Fig. 8.  Overall, the use of 
Experiment FDDA meteorology fields in SCIPUFF 
produces the largest number of hits (29) and smallest 
number of misses (7), while its false alarms were neither 
the largest nor smallest from the set of experiments.    
By comparison, Experiment CTRL produces five fewer 
hits (24) and five more misses (12) than FDDA.  Please 
note that the sum of hits and misses is a constant (one 
more miss means one fewer hit).  Thus only the number 
of hits and false alarms will be discussed for brevity.  
Experiment CTRL had 19 false alarms compared to 13 
false alarms for FDDA.  Note that the statistics for CTRL 
and FDDA are independent of the ensemble data 
assimilation experiments group.   

For the group of IC24 experiments, Experiment 
FDDA has six more hits than EnKFIC24, and 
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HEnKFIC24 has three more hits than the EnKFIC24, 
while EnKFIC24 has one fewer hit than the CTRL.  All 
three data assimilation experiments have fewer false 
alarms than the CTRL, while the HEnKFIC24 produces 
the smallest number of false alarms.  The better 
temporal smoothness (better dynamic balance) of the 
HEnKF dynamic analyses compared to that of the EnKF, 
as discussed in the previous section, may help to 
explain why the SCIPUFF using the HEnKF 
meteorology fields has better statistics from the 
independent tracer concentration data than the EnKF.  
This may also contribute to why the FDDA experiment 
performs so well. 

When the additional multi-physics ensemble 
members are used, the HEnKFICPH24 has five more 
hits and five fewer false alarms than the EnKFICPH24, 
while the FDDA has two more hits and one more false 
alarm than the HEnKFICPH24.  The EnKFICPH24 has 
one fewer hit and three more false alarms than the 
EnKFIC24.  The HEnKFICPH24 has one more hit than 
the HEnKFIC24, while HEnKFICPH24 has the same 
number of false alarms as the HEnKFIC24.  Therefore, 
the ICPH ensemble increases the hits (and decreases 
the misses) with no change of the false alarms for the 
HEnKF.  But the ICPH ensemble degrades all three 
tracer statistics for the EnKF.   The increase in the noise 
levels in the EnKF caused by the multi-physics 
ensemble members may contribute to the degradation 
of the statistics verified against the surface 
concentration data, because the increased noise levels 
indicate degraded dynamic consistency.   

When the ensemble size is increased from 24 to 48 
members, the EnKFIC48 has one more hit than the 
EnKFIC24, while it has the same number of false alarms 
as EnKFIC24.  The EnKFICPH48 has one fewer hit and 
one fewer false alarm than the EnKFICPH24.  The 
HEnKFIC48 has one fewer hit and one more false alarm 
than the HEnKFIC24.  The HEnKFICPH48 has one 
fewer hit and one fewer false alarm than the 
HEnKFICPH24.  Thus there is no clear improvement or 
degradation for either the EnKF or HEnKF when the 
ensemble size is increased from 24 to 48.  This is 
consistent with the meteorology statistics and the noise 
levels that are fairly similar for the same ensemble data 
assimilation experiments using 24 versus 48 ensemble 
members.   The differences in the meteorological 
statistics and the noise levels are larger between the IC 
and ICPH ensembles than those between 24 and 48 
ensemble members.  The 48-member ICPH ensemble 
again degrades all three tracer statistics for the EnKF 
compared to the IC ensemble, which is consistent with 
the results with 24 ensemble members.  However, the 
ICPH ensemble with 48 members increases the hits, 
and decreases the false alarms for the HEnKF 
compared to the IC ensemble.  

To assess the overall performance of each data 
assimilation method verified against the surface tracer 
data, we assign an ordinal ranking to the set of 
experiments in Table 4.   The rank is based on the sum 
of misses and false alarms in the 24-h tracer study 
period.  Since the sum of hits and misses is a constant, 
the hits are already represented by the value of misses.  

By looking for smaller values of the sum of misses and 
false alarms, we can define the better performing 
experiments in terms of the tracer verification.              
Experiment FDDA has the smallest value of the sum 
(20), while Experiment HEnKF with the 24-member or 
48-member ICPH ensemble (HEnKFICPH24 or 
HEnKFICPH48) has a value only one larger than that of 
the FDDA. The HEnKF with the 24-member and 48-
member IC ensemble (HEnKFIC24 and HEnKFIC48) 
has values of 22 and 24, respectively.  All HEnKF 
experiments produce smaller values of the sum than the 
EnKF experiments.  The best EnKF experiment, 
EnKFIC48, shows a value of 26, followed by EnKFIC24 
with 27, and these sums are five or six larger than that 
of the best HEnKF experiment (HEnKFICPH24 or 
HEnKFICPH48).  Finally, Experiments EnKFICPH24, 
EnKFICPH48 and CTRL show a value of 31, and this 
value is at least 10 larger than those at or near the top 
of the list, Experiments FDDA and HEnKFICPH24 / 
HEnKFICPH48.   

Although this independent verification is for only 
one case with a limited sample, the results are 
consistent.  The experiments having good posteriors 
and priors along with low insertion noise scored higher 
with the independent tracer data.  There appears to be 
some advantage in the hourly analyses produced by the 
continuous HNEnKF compared to the intermittent EnKF.  
This is also consistent with the lower noise levels of 
Experiment HEnKF compared to the Experiment EnKF 
in the previous section.  Therefore, the added value of 
the HNEnKF, which applies the EnKF gradually in time 
via nudging-type terms and produces better temporal 
smoothness, has been demonstrated. 

 
6. Conclusions 

 
A hybrid nudging-EnKF (HNEnKF) data assimilation 

approach was proposed and tested in Lei et al. (2011a, 
b), and it is investigated here using WRF/DART with 
real observations from the CAPTEX-83 case.  The 
HNEnKF effectively combines the strengths of the EnKF 
and nudging while avoiding their individual weaknesses.  
It applies the EnKF gradually in time via nudging-type 
terms, and provides flow-dependent and time-
dependent nudging coefficients by using the EnKF.  The 
HNEnKF also extends the nudging coefficients to 
include nonzero off-diagonal elements, which improves 
the inter-variable influences of the innovations and 
dynamic consistency. 

The set of data assimilation methods is first verified 
against the meteorological data.  For the 24-member IC 
ensemble based on perturbations of the ICs and LBCs, 
the HNEnKF has better fit-to-observation statistics 
(posterior) than the EnKF for both wind and mass fields, 
although both HNEnKF and EnKF have larger posterior 
RMS errors than the FDDA.  The HNEnKF has similar 
or better three-hourly forecast (prior) statistics than the 
EnKF and FDDA.  The 24-member ICPH ensemble 
improves the posteriors and slightly improves the priors 
of the mass fields compared to the IC ensemble for the 
EnKF and HNEnKF, with larger improvements for the 
EnKF.  The wind field posteriors and priors are very 
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similar for the IC and ICPH ensembles.  The increase of 
ensemble size from 24 to 48 slightly improves the 
posteriors and priors of the EnKF and HNEnKF for wind 
and mass for both the IC and ICPH ensembles.  The 
comparisons between EnKF and HNEnKF for both the 
IC and ICPH ensembles of 48 ensemble members are 
consistent with those of the 24 ensemble members.   

The analyses of the domain average absolute 
surface pressure tendency shows that the intermittent 
EnKF has much higher noise levels than the continuous 
HNEnKF and FDDA approaches when three-hourly 
observations are assimilated.  The noise levels in the 
EnKF are even higher at the twelve-hourly times when 
rawinsonde data are also assimilated and when multi-
physics ensemble members are included, while the 
HNEnKF shows little sensitivity to these factors.  This 
demonstrates that the HNEnKF is able to provide better 
temporal smoothness and dynamic consistency in the 
hourly analyses than the EnKF while retaining its 
advantages by using the flow-dependent and time-
dependent background error covariances to spread the 
innovations in the horizontal and vertical directions.   

Finally, the set of data assimilation methods is 
verified against the independent surface tracer data.  
The FDDA has the best overall statistics, as 
represented by the smallest value of the sum of misses 
and false alarms, followed by the HNEnKF using the 
ICPH ensemble and having a value only one larger than 
that of the FDDA.  The HNEnKF produces consistently 
better statistics than the EnKF.  Compared to the IC 
ensemble, the ICPH ensemble decreases the misses 
without increasing the false alarms for the HNEnKF, but 
the ICPH ensemble degrades all tracer data statistics 
for the EnKF.   Because the HNEnKF analyses used to 
drive the SCIPUFF produce consistently better tracer 
data verification statistics than the EnKF, there appears 
to be some advantage in the dynamic analyses 
produced by the continuous HNEnKF compared to the 
intermittent EnKF, as we hypothesized using simple 
models and OSSEs in Lei et al. (2001a, b). 
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Table 1.  Eight different physics configurations for the ICPH ensemble.  The first physics configuration is the default 
physics configuration used in the IC ensemble. 
 

Physics configuration Microphysics Convective PBL 

1 WSM-3 Kain-Fritsch MYJ 

2 Lin et al. Kain-Fritsch MYJ 

3 WSM-3 Betts-Miller-Janjic MYJ 

4 WSM-3 Kain-Fritsch YSU 

5 Lin et al. Betts-Miller-Janjic MYJ 

6 Lin et al. Kain-Fritsch YSU 

7 WSM-3 Betts-Miller-Janjic YSU 

8 Lin et al. Betts-Miller-Janjic YSU 

 
 
 
 
Table 2.  Experiment design of the HNEnKF in WRF / DART. 
 

Exp. Name Exp. Description 

CTRL Assimilate no observations 

FDDA Assimilate observations by observation nudging  

EnKFIC24 Assimilate observations by EnKF with IC ensemble and 24 ensemble members 

EnKFIC48 Assimilate observations by EnKF with IC ensemble and 48 ensemble members 

EnKFICPH24 Assimilate observations by EnKF with ICPH ensemble and 24 ensemble members 

EnKFICPH48 Assimilate observations by EnKF with ICPH ensemble and 48 ensemble members 

HEnKFIC24 Assimilate observations by HNEnKF with IC ensemble and 24 ensemble members 

HEnKFIC48 Assimilate observations by HNEnKF with IC ensemble and 48 ensemble members 

HEnKFICPH24 Assimilate observations by HNEnKF with ICPH ensemble and 24 ensemble members 

HEnKFICPH48 Assimilate observations by HNEnKF with ICPH ensemble and 48 ensemble members 
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Table 3. Major data assimilation parameters for the set of experiments.  See section 3.4 for details. 
 

Experiment 
Nudging 
strength 

Horizontal 
radius of 
influence 

Surface 
data 

vertical 
radius of 
influence 
(stable 
PBL) 

Surface 
data 

vertical 
radius of 
influence 
(unstable 

PBL) 

 

Half-
period 

of 
nudging 

time 
window 

 

Horizontal 
error 

covariance 
localization  

Vertical 
error 

covariance 
localization  

Error 
covariance 

inflation 

FDDA 
4×10

-4
 

s
-1

 
67-200 

km 
100 m 

PBL top 
plus 50m 

1-2 h --- --- --- 

EnKF --- --- --- --- --- 533 km 150 hPa 
Adaptive 
inflation 

HEnKF --- --- --- --- 1-2 h 533 km 150 hPa 
Adaptive 
inflation 

 
 
 
 
 
Table 4.  Ordinal ranking of the set of experiments by the sum of misses and false alarms from the independent 
tracer data verification.  
 

Ordinal ranking Experiment Sum of misses and false alarms 

1 FDDA 20 

2 HEnKFICPH24 21 

2 HEnKFICPH48 21 

3 HEnKFIC24 22 

4 HEnKFIC48 24 

5 EnKFIC48 26 

6 EnKFIC24 27 

7 EnKFICPH24 31 

7 EnKFICPH48 31 

7 CTRL 31 
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Figure 1. Schematic showing the procedures of the hybrid nudging-EnKF approach (after Lei et al. 2011a).   
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.  The WRF 12-km domain (outer domain) and 
the 12-km SCIPUFF domain (inner domain). 
 

    
 
 
Figure 3.  Surface cold and warm fronts during CAPTEX 
at 2200 UTC 18 September 1983.  Observed tracer 
concentrations (parts of perflurocarbon per 10

15
 parts of 

air by volume, or femtoliters/liter) at this time are shown 
over the surface sampling network (after Deng et al. 
2004).  "R" is the release point at Dayton, OH.   
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Figure 4. The average RMS errors of the posteriors for Experiments CTRL and FDDA, and Experiments EnKF and 
HEnKF for both IC and ICPH ensembles with 24 or 48 ensemble members through the 48-h simulation period.  (a) 
wind speed (ms

-1
), (b) wind direction (degrees), (c) temperature (K) and (d) relative humidity (percent).    

 
 
 

(a) (b) 

(c) (d) 
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Figure 5.  The same as Fig. 4, except for the priors. 
 
 
 
 

(a) (b) 

(c) (d) 
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Figure 6.  The evolutions of the domain average absolute surface pressure tendency of Experiment FDDA, each 
ensemble member of Experiment EnKFIC24 and their ensemble mean, and Experiment HEnKFIC24.   
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Figure 7.  The evolutions of the domain average surface pressure tendencies.  (a) ensemble mean of Experiments 
EnKFIC24 and EnKFICPH24, and (b) Experiments HEnKFIC24 and HEnKFICPH24. 
 

(a) 

(b) 
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Figure 8.  The composite statistics (hits, misses and false alarms) of the predicted surface tracer concentration 
through the 24-h period from each experiment from Table 2 verified against the observed surface tracer concentration 
data. 
 
 
 
 
 
 
 
 


