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1. INTRODUCTION 
  

As part of the NOAA Hazardous Weather Testbed 
(HWT) 2010 Spring Experiment, the Center for Analysis 
and Prediction of Storm (CAPS) once again produced 
multi-model storm-scale ensemble forecasts (SSEF) in 
realtime from 26 April through 18 June. Compared to 
previous experiment seasons (Kong et al. 2007, 2008, 
2009; Xue et al. 2007, 2008, 2009), the 2010 forecast 
domain was expanded to cover the full continental 
United States (Figure 1) and the number of 4-km 
ensemble members was increased from 20 to 26. The 
2010 SSEF included 19 WRF-ARW, 5 WRF-NMM, and 
2 ARPS members; and WRFV3.1.1 was used for both 
dynamic cores. New in 2010 Spring Experiment was the 
generation of a large set of post-processed ensemble 
products from a 15-member sub-ensemble that consists 
of the multi-physics, IC and LBC perturbation, and radar 
analysis members. Post-processed products include 
ensemble mean and maximum, probability matching 
mean, frequency-based ensemble probability, and 
neighborhood probability of accumulated precipitation, 
reflectivity, environmental fields such as surface 
temperature, dew point, maximum downdraft speed and 
maximum 10-m wind speed, CAPE-shear parameters, 
and storm-attribute parameters such as updraft helicity, 
updraft speed, and integrated graupel. For all members 
but three (one from each model), full-resolution radar 
data from the nationwide WSR-88D radar network (both 
reflectivity and radial wind) were analyzed into the ICs 
using the ARPS 3DVAR and cloud analysis package 
(Gao et al. 2004; Hu et al. 2006). 30-h forecasts, 
initiated at 0000UTC, were produced daily on weekdays 
from April 26 to June 18 on a Cray XT4 supercomputer 
with over 18,000 cores at the National Institute of 
Computing Science (NICS) of the University of 
Tennessee. The post-processed ensemble products 
were made available in real-time in GEMPAK format 
data files and on the web for the SPC, NSSL, DTC, and 
HPC, and evaluated daily by HWT participants. 

A total of 36 days of complete ensemble forecasts 
were produced during the experiment period. Using the 
NSSL 1km resolution QPE data as verification dataset, 
the SSEF QPF and probabilistic QPF performance has 
been evaluated using various traditional verification 
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metrics and compared to the operational 12-km NAM 
forecasts and the 32-km Short-Range Ensemble 
Forecast (SREF) products.  
 
2. EXPERIMENT HIGHLIGHT 
 

The CAPS 2010 Spring Program started on 26 April 
2010 and ended on 18 June, encompassing the NOAA 
HWT 2010 Spring Experiment that is officially between 
17 May and 18 June. This experiment period is shifted 
into mid-June to accommodate Aviation Weather 
Testbed activity. Three numerical weather models are 
used to produce a 26 member 30 h ensemble forecast 
during weekdays, initialized at 0000 UTC, covering a 
full-CONUS domain (Figure 1) at 4 km horizontal grid 
spacing. Nineteen members are produced using the 
Weather Research and Forecast (WRF) Advanced 
Research WRF core (ARW), five members are 
produced using the WRF Nonhydrostatic Mesoscale 
Model core (NMM), and two members are produced 
using the Advanced Regional Prediction System 
(ARPS).  Both WRF cores are the V3.1.1 release.  

All forecasts use NAM 12 km (218 grid) 00Z 
analyses as background for initialization with the initial 
condition perturbations for the ensemble members 
coming from the NCEP Short-Range Ensemble 
Forecast (SREF). Doppler radar radial wind and 
reflectivity data from over 140 available WSR-88D 
stations within the domain are assimilated through 
ARPS 3DVAR and Cloud Analysis package into all but 
three members (one from each model group).  

All 4 km ensemble forecast, along with one single 
deterministic 1 km forecast, are performed on Athena, a 
Cray XT4 supercomputer system with 18000+ 
computing cores, at the NSF sponsored National 
Institute of Computational Sciences (NICS) in the 
University of Tennessee. This allows the entire 
forecasts – 26 ensemble runs at 4 km grid and 1 
deterministic run at 1 km grid – to use the entire 
machine in dedicated mode overnight, bringing the total 
forecast walltime down to within 6 h. Hourly model 
outputs are archived on the mass storage HPSS at 
NICS.  

Figure 1 shows the coverage area of the model 
domains. 

Since NMM uses rotated E-grid while both ARW 
and ARPS use C-grid, special software codes were 
developed at CAPS to convert between the two grids in 
order to utilize a single 3DVAR/Cloud Analysis over a 
larger outer domain that encompasses both forecast 
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domains (Figure 1) by converting the analysis to the 
forecast domains, and to convert NMM forecast to a 
common verification domain that is the same as the 
ARW and ARPS forecast domain.  These special codes 
were upgraded to be compatible with the new WRF 
version (V3.1.1) used in 2010 season. 

 

 
Figure 1. Computational domains for the 2010 Spring 
Experiment. The outer thick rectangular box represents 
the domain for performing 3DVAR/Cloud Analysis 
(1200×780). The red dot area represents the WRF-
NMM forecast domain (790×999). The inner thick box is 
the domain for WRF-ARW and ARPS forecast and also 
for common verification (1160×720). 

Tables 1-3 highlight the configurations for each 
individual members of each model group (arw, nmm, 

and arps). cn refers to the control member, with radar 
data analysis, c0 is the same as cn except for no radar 
data is analyzed in. m3 – m19 are members with either 
initial perturbation or physics perturbation or both added 
on top of cn initial condition. NAMa and NAMf refer to 12 
km NAM analysis and forecast, respectively. ARPSa 
refers to ARPS 3DVAR and Cloud Analysis using NAMa 
as the background. For the perturbed members 
arw_m5~m14 and nmm_m3~m5, the ensemble initial 
conditions consist of a mixture of bred and ET 
perturbations coming from the 21Z SREF perturbed 
members (4 WRF-em (ARW), 4 WRF-nmm (NMM), 2 
ETA-KF, 2 ETA-BMJ, and 1 RSM-SAS) and physics 
variations (grid-scale microphysics, land-surface model 
(LSM), and PBL physics). New in 2010 Spring 
Experiment is the addition of three random perturbation 
members (arw_m3~m5) and five extra physics-
perturbation-only members (arw_m15~m19). Two types 
of random perturbations are added, one is Gaussian 
type perturbation and another is Gaussian perturbation 
plus a recursive filter (RF) with convective storm scale 
length. The physics-perturbation-only members are 
added to help assessing impacts from different 
microphysics and PBL schemes. The lateral boundary 
conditions come from the corresponding 21Z SREF 
forecasts directly for those perturbed members and from 
the 00Z 12 km NAM forecast for the non-SREF-
perturbed members.  

For the ARPS model group, the only members are 
cn and c0, as in the 2009 season. 

Table 1. Configurations for each individual member with WRF-ARW core. NAMa and NAMf refer to the 12 km NAM 
analysis and forecast, respectively. ARPSa refers to ARPS 3DVAR and cloud analysis 

member IC BC 
Radar 
data 

microphysics LSM PBL 

arw_cn 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ 

arw_c0 00Z NAMa 00Z NAMf no Thompson Noah MYJ 

arw_m3 arw_cn + random pert 00Z NAMf yes Thompson Noah MYJ 

arw_m4 
arw_cn + RF-
smoothed pert 

00Z NAMf yes Thompson Noah MYJ 

arw_m5 
arw_cn + em-p1 + RF 

smoothed pert 
21Z SREF em-

p1 
yes Morrison RUC YSU 

arw_m6 
arw_cn +  

em-p1_pert 
21Z SREF em-

p1 
yes Morrison RUC YSU 

arw_m7 arw_cn + em-p2_pert 
21Z SREF em-

p2 
yes Thompson Noah QNSE 

arw_m8 arw_cn – nmm-p1_pert 
21Z SREF 
nmm-p1 

yes WSM6 RUC QNSE 

arw_m9 
arw_cn + nmm-

p2_pert 
21Z SREF 
nmm-p2 

yes WDM6 Noah MYNN 

arw_m10 
arw_cn + rsmSAS-

n1_pert 
21Z SREF 
rsmSAS-n1 

yes Ferrier RUC YSU 

arw_m11 
arw_cn – etaKF-

n1_pert 
21Z SREF 
etaKF-n1 

yes Ferrier Noah YSU 
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arw_m12 
arw_cn + etaKF-

p1_pert 
21Z SREF 
etaKF-p1 

yes WDM6 RUC QNSE 

arw_m13 
arw_cn – etaBMJ-

n1_pert 
21Z SREF 
etaBMJ-n1 

yes WSM6  Noah MYNN 

arw_m14 
arw_cn + etaBMJ-

p1_pert 
21Z SREF 
etaBMJ-p1 

yes Thompson RUC MYNN 

arw_m15 00Z ARPSa 00Z NAMf yes WDM6 Noah MYJ 

arw_m16 00Z ARPSa 00Z NAMf yes WSM6 Noah MYJ 

arw_m17 00Z ARPSa 00Z NAMf yes Morrison Noah MYJ 

arw_m18 00Z ARPSa 00Z NAMf yes Thompson Noah QNSE 

arw_m19 00Z ARPSa 00Z NAMf yes Thompson Noah MYNN 

* For all members: ra_lw_physics= RRTM; ra_sw_physics=Goddard; cu_physics= NONE 

Table 2. Configurations for each individual member with WRF-NMM core 

member IC BC 
Radar 
data 

mp_phy lw_phy sw-phy sf_phy 

nmm_cn 00Z ARPSa 00Z NAMf yes Ferrier GFDL GFDL Noah 

nmm_c0 00Z NAMa 00Z NAMf no Ferrier GFDL GFDL Noah 

nmm_m3 
nmm_cn + nmm-

n1_pert 
21Z SREF 
nmm-n1 

yes Thompson RRTM Dudhia Noah 

nmm_m4 
nmm_cn + nmm-

n2_pert 
21Z SREF 
nmm-n2 

yes 
WSM  
6-class 

RRTM Dudhia RUC 

nmm_m5 
nmm_cn + em-

n1_pert 
21Z SREF em-

n1 
yes Ferrier GFDL GFDL RUC 

* For all members: cu_physics= NONE; pbl_physics= MYJ. 

Table 3. Configurations for each individual member with ARPS 

member IC BC 
Radar 
data 

Microphysics radiation PBL Turb sf_phy 

arps_cn 00Z ARPSa 00Z NAMf yes Lin Chou/Suarez TKE 3D TKE 
Force-
restore 

arps_c0 00Z NAMa 00Z NAMf no Lin Chou/Suarez TKE 3D TKE 
Force-
restore 

* For all members: no cumulus parameterization 
 
3. ENSEMBLE PRODUCTS & EXAMPLES 

 
Post-processed ensemble products from a subset 

of 15 out of 26 ensemble members (red colored in Table 
1-3), representing multi-model, IC perturbation, and 
physics variation ensemble with influence of radar data 
assimilation, are generated in near-realtime. The 
products include ensemble maximum and mean, 
probability matching mean (Ebert 2001; Clark et al. 
2009; Kong et al 2008), ensemble exceedance 
probability, and neighborhood probability. Variables 
processed include forecast reflectivity, 1-, 3-, and 6-h 
accumulated precipitation, 2-m temperature and dew 

point, 10-m wind, 3-6 km updraft/downdraft velocities, 
echo top exceeding 18 dBZ, updraft helicity, 0-1 km and 
0-6 km wind share, vertically integrated grapeul/hail 
content, and some convective storm related indices 
(CAPE, CIN, LCL). Other variables diagnosed include 
Bunkers right-moving storm motion vector and speed, 
Supercell Composite Parameter (SCP), Significant 
Tornado Parameter (STP) (Bunkers et al. 2000; 
Thompson et al. 2002, 2004). 

Both individual member and ensemble products are 
made available to HWT, AWS and DTC. The latter is 
also available to HPC. In order to minimize the data flow, 
the GEMPAK dataset, including individual member and 
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ensemble product, represents only a sub-domain that 
covers the eastern 2/3 of CONUS (Figure 2). CAPS 
keeps a complete set of 2D variables in full domain in 
HDF4 format, extracted from the realtime forecasts.  

 

Xue et al. (2010) presents detail description for the 
CAPS involvement in the NOAA 2010 HWT Spring 
Experiment, with many example forecast cases. Figure 
3 is an example of May 10 Oklahoma Tornado case, 
showing some post-processed ensemble products that 

can provide valuable forecast guidance long before the 
tornado occurrence. A major tornado outbreak occurred 
on May 10, 2010 affecting large areas of Oklahoma, 
Kansas, and Missouri, with the bulk of the activity in 
central and eastern Oklahoma. Over 60 tornadoes, with 
up to EF4 intensity, affected large parts of Oklahoma 
and parts of southern Kansas and Missouri, with the 
most destructive tornadoes causing severe damage in 
southern suburbs of the Oklahoma City metropolitan 
area and just east of Norman, Oklahoma, where the 
fatalities were reported from both tornado tracks. 

In Figure 3a, the red circle highlights the tornado 
bearing storm system around the tornado occurrence 
time at 22 UTC May 10, 2010. Most ensemble members, 
including the ARW control member (cn), missed the line 
of supercells that produced tornados, except only a few 
(Figure 3c). However, good indications of environment 
favoring tornadic activities are predicted 22 h in advance 
from ensemble products such as the neighborhood 
probability of hourly maximum updraft helicity – a 
product of 3-5 km updraft velocity and vertical vorticity – 
exceeding 25 m2/s2 (Figure 3b), and the probability of 
Significant Tornado Parameter (STP) – a composite 
parameter calculated based on 0-6 km bulk wind 
difference, 0-1 km storm relative helicity, surface-based 
CAPE, LCL and CIN – exceeding 3 (Figure 3d). Majority 
of reported F2 and above tornados were associated with 
STP exceeding 1 (Thompson et al. 2002, 2004). 

 

 
 

a b 

c d 

Figure 2. SPC/NSSL sub-domain for the HWT GEMPAK  
dataset (860x690). 

Figure 3. Observed composite reflectivity mosaic, valid at 22 UTC May 10, 2010, and the 22 h forecast of the 
neighborhood probability of the hourly maximum updraft helicity exceeding 25 m2/s2 (a), spaghetti contours off 
composite reflectivity equal to 35 dBZ (c), and the probability of STP exceeding 3 (d). 
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4. STATISTICAL EVALUATION OF QPF 
 

4.1 BIAS and ETS 
 
The NSSL NMQ precipitation estimation product 

(QPE) has been used in this study to verify the QPF and 
PQPF from the CAPS SSEF. The verifications are 
performed over the entire verification domain (see 
Figure 1). Figure 4 shows the frequency biases (BIAS) 
of the 1-h accumulated precipitation for the thresholds of 
0.01, 0.1, and 0.5 inch, respectively, for the 15-member 
sub-ensemble, averaged over the 36 days that have 
complete ensemble data through the experiment period.  

As found in previous experiment years (Kong et al. 2007, 
2008), the ensemble means have the highest positive 
bias for the light rain threshold (over 200% around 24 h) 
and have very significant underforecast for the heavy 
rain threshold through most of forecast duration. Among 
models, while NMM members tend to overforecast 
precipitation areas, with the two highest lines between 
0-18 h associated with members using non-operational 
radiation options (RRTM-Dudhia), the ARPS member 
generally has the least BIAS, except for the heavy rain 
thresholds. 

Figure 5 shows the Equitable Threat Scores (ETS) 
of the 1-h accumulated precipitation for the same 

a b c 

a b c 

a b c 

Figure 4. Frequency biases of 1-h accumulated precipitation with the thresholds of (a) 0.01 inch, (b) 0.1 inch, and 
(c) 0.5 inch, averaged over 36 days. PM refers to the probability matched mean. 

Figure 5. Equitable Threat Scores (ETS) of 1-h accumulated precipitation with the thresholds of (a) 0.01 inch, (b) 
0.1 inch, and (c) 0.5 inch, averaged over 36 days. 

Figure 6. Equitable Threat Scores (ETS) of 3-h accumulated precipitation with the thresholds of (a) 0.1 inch, (b) 0.5 
inch, and (c) 1.0 inch, averaged over 36 days. 
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thresholds as in Figure 4. The probability matched 
means (PM) outscore all individual members, as well as 
the simple ensemble mean except for the 0.1 inch 
threshold where the two are comparable. The later 
scores the worst for the heavy rain threshold. Figure 6 
shows the ETS scores for the 3-h accumulated 
precipitation, which again exhibits that PMs have the 
best performance with respect to the deterministic QPF 
sense measured by the traditional ETS metrics.  

 
4.2 BS and ROC 

 
The areas under the Relative Operating 

Characteristic curves (ROC) measure the ability of 
probabilistic forecasts to distinguish between event and 
non-event, and are insensitive to forecast biases 
(Mason 1982; Clark et al. 2010). The ROC area is 
calculated by computing the area under a curve 
constructed by plotting the probability of detection (POD) 
against the probability of false detection (POFD) for 
specified ranges of PQPFs. The range of ROC area is 0 
to 1, with 1 a perfect forecast and areas greater than 0.5 
having positive skill. A ROC area of 0.7 is generally 
considered the lower limit of a useful forecast (Buizza 
1997). Figure 7 shows the ROC areas of the frequency-
based ensemble probability forecast of the 1-h 
accumulated precipitation. It can be seen that all three 
threshold curves are above 0.6, while the 0.01 and 0.25 
inch curves stay above 0.7. 

 

 
 
 
 
 
 
Recognizing that small displacement errors in high-

resolution precipitation forecasts can cause serious 
decrease in grid point-based skill scores, in the 2010 
season neighborhood probabilities of certain QPF fields 
were also calculated by using a 40 km radius of 
influence (ROI) with a 2D Gaussian smoother using a σ  

value of 10. Figure 8 compares the simple frequency 
based probability (black lines) and the neighborhood 
probability (red lines) in terms of ROC. It can be seen 
that the use of neighborhood probability increases the 
ROC area by about 0.15. Even without the use of 
neighborhood probability, the ROC area is well above 
0.7 for the threshold, indicating useful forecast already.  

 

 
 
 
 
 
 
 
ROC is a measure of the resolution for a 

probabilistic forecast, not the reliability. The use of 
neighborhood probability does not improve the Brier skill 
scores and reliability. In fact, extra biases are introduced 
through the neighborhood and smoothing process, 
further affecting reliability. Figure 9 compares the Briers 
scores between the simple frequency probability and the 

a 

b 

Figure 7. ROC areas of the frequency-based probability 
of the 1-h accumulated precipitation for various 
thresholds. 

Figure 8. ROC curves of frequency (black line) and 
neighborhood (red line) probabilities of 3-h 
accumulated precipitation exceeding 0.5 inch at 24 h 
(a) and the ROC areas (b). 
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neighborhood probability of the 3-h accumulated 
precipitation exceeding 0.5 inch, showing worse scores 
for the neighborhood probability throughout the forecast 
duration. Discussions among co-authors indicate the 
need to apply the same neighborhood technique 
(without Gaussian smoothing) to the QPE fields before 
doing verification. Further investigation is needed. This 
suggests the importance of effective bias removal and 
ensemble calibration in order to produce highly skillful 
probabilistic QPFs from SSEF. 

 

 
 
 
 
 
 
 
 

4.3 SSEF vs NAM and SREF 
 
It is interesting to directly compare the CAPS 

storm-scale ensemble forecast (SSEF) QPF/PQPF, 
without any bias removal and calibration, against those 
from the operationally available NCEP 12 km NAM 
(deterministic) and the coarser resolution short-range 
ensemble forecast (SREF, probabilistic). Precipitation 
forecasts from NAM and SREF, over the same 36 days 
as in SSEF dataset, are first interpolated to the 4km 
verification grid (see Figure 1). For SREF, only the 11 
members that are used for providing LBC perturbations 
for SSEF are included in the comparison. 

Figure 10 plots the ETS scores for the 3-h 
accumulated precipitation from the two ARW control 
members (ARW_CN with radar, ARW_C0 without radar), 
the probability matched means from the 15-member 
SSEF (SSEF_PM) and the 11-member SREF sub-
ensemble (SREF_PM), and the NCEP 12 km NAM. The 
following conclusions can be drawn from Figure 10: 

- Probability matched means from SSEF 
outperform NAM by a wide margin, also 
outperform SREF_PM by a wide margin for the 
two higher thresholds 

- The 4 km ARW_CN member  also outperforms 
NAM, and outperforms SREF_PM except at 
the light rain threshold 

- Radar analysis contributes to higher ETS 
scores (ARW_CN vs. ARW_C0) throughout 
the entire forecast duration, mostly evident 
between 0-18 h 

 
 
 
 
 
- Combined with Figure 6, it can been seen that 

SSEF_PM outperforms all individual SSEF (4 
km storm-scale ensemble) members for all 
thresholds 

 
It needs to point out that the SREF forecasts have 

3 more hours in lead time than the SSEF and NAM 
forecasts, due to SREF’s staggered initiation times. 
Nevertheless, for the two higher thresholds (0.5 and 1.0 
inch), the SREF_PM, though with coarser resolution, (at 
32 km) have comparable performance to the 12 km 
NAM. 

To evaluate the probabilistic QPF, the ROC curves 
at 24 h and ROC areas of the 3-h accumulated 
precipitation exceeding 0.5 inch are presented in Figure 
11. It can be seen that at this threshold the operational 
SREF sub-ensemble has ROC areas between 0.53 and 
0.62, higher than the skillful (0.5) level but lower than 
the lower limit of 0.7 that is thought to be a useful 
probabilistic forecast.  The high-resolution SSEF, on the 
other hand, has a much higher ROC areas, ranging 
between 0.74 an 0.8, indicating a probabilistic QPF with 

Figure 9. Briers score of the frequency (black line0 
and neighborhood (red line) probabilities of the 3-h 
accumulated precipitation exceeding 0.5 inch. 

Figure 10. ETS scores of the 3-h accumulated 
precipitation, averaged over 36 days. 
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greatly improved economical values. Cautions should 
be taken in this comparison, however, since the larger 
ensemble number of SSEF than the SREF sub-
ensemble (15 vs. 11) may unfairly give SSEF an 
advantage when computing the ROC curves based on 
frequency probabilities. Full SREF ensemble will be 
verified and compared in next season. 
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