
1 INTRODUCTION 
The question of consistency of updated forecasts 

through time often comes up in the context of weather 
events such as hurricanes or high wind days. For a 
single event, forecasts are made and updated as the 
time of the event nears. The consistency of these 
updates is important to many users, though some users 
find this quality desirable while others do not. 
Historically, the consistency of weather forecasts 
through time has not been considered or measured. 
Recently, several authors have constructed consistency 
measures for specific forecast types, including 
ensembles (Zsoter et al., 2009), precipitation (Ehret, 
2010), operational forecasts (Ruth et al., 2009), and 
Markov chains (McLay, 2010). The forecast verification 
community may also find it useful to have simple and 
widely applicable measures of forecast continuity. Such 
measures are already in use in other areas of 
forecasting, such as economics (Clements, 1997). This 
paper considers the use of two such measures for 
weather forecasts. 

For many users, consistency in forecasts through 
time is a desirable quality. If updating forecasts change 
much or often, a user may believe they are of low 
quality, possibly even random. This is particularly an 
issue for decision makers who create plans based on 
early forecasts, then must change their plans repeatedly 
as new forecasts arrive. “The consistent high expense 
of the volatile sequences is evidence that the run-to-run 
volatility or ʻjumpinessʼ (Zsoter et al., 2009) that is so 
disliked by forecasters can have a quantitatively 
meaningful impact on the decision process.” (McLay, 
2010). 

However, many users see consistency in forecasts 
as evidence of a poor forecast. In both statistical and 
numerical weather modeling, the errors will ideally be 
noise, with no structure. Consistency in the forecasts 
indicates structure in the errors and thus suggests room 
for forecast improvement. The question of whether 
forecast consistency is desirable or not will not be 
addressed further here. However, it is clear that this 
quality should be measured. 

For forecasts that get updated, the consistency in 
the updates is an important aspect of forecast quality. 
Unfortunately, though everyone knows forecast 
consistency or jumpiness when they see it, the use of 
objective measures of this quality in forecast verification 
is very limited.  

A similar problem exists in economic forecasting, 
where inconsistent forecasts are referred to as rational  

 
or efficient. Rational or efficient forecasts are deemed to  
contain all information available at the time of issuance, 
a desirable quality. Any relationship of the forecasts 
through time is evidence of hedging, or holding back 
some information to include later, a form of “cheating”. 
In economics, new information, perhaps in the form of 
rate or policy changes, happen all at once. “Useful 
information on the terminal event is assumed to arrive in 
one lump sometime during the n periods before the 
terminal event.” (Nordhaus, 1987). For weather 
forecasts, new information may trickle in over time. If 
this is true, then consistency in weather forecasts may 
not be as undesirable as consistency in economic 
forecasts.  

Two measures used by economists to determine 
rationality are tested on example weather forecasts. 
Tests of market efficiency include serial correlation tests 
and runs tests. It is typical in such tests to allow for a 
linear trend. The utility and sensitivity of these tests for 
evaluating the quality of updated weather forecasts are 
discussed. 

Generally, consistency is a property of the 
forecasts only, though observations can be incorporated 
into the measures of consistency. The accuracy of a 
forecast is unrelated to its consistency. Thus, a measure 
of consistency should be considered an addition to 
accuracy measures.  

 

2 DATA  
Forecasts with decreasing lead times of a single 

terminal event (i.e. with equal valid time) were selected 
for four surface locations (Boston, Chicago, Denver, and 
Los Angeles). The North American Model (NAM) 
forecasts used have lead times out to 84 hours with 
updates each 6 hours. Thus, series of 14 forecasts are 
examined. Ideally, longer series would be available. 
However, it appears common for weather forecasts to 
have a short series of updates. Thus, a useful measure 
must be able to detect consistency in short series in at 
least some cases. Further, in order to be useful, a 
measure of consistency must work on a variety of 
forecast variables, whether they are symmetric, skewed, 
Gaussian, or some other distribution. Therefore, 
temperature, pressure, and wind speed forecasts are 
included in this analysis. Precipitation, since it is only 
conditionally continuous, is not included in this work, but 
will be examined in future analyses, as will other 
meteorological variables.  
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For each series of forecasts, two types of series 
can be derived for analysis, series of errors and series 
of revisions. Revisions are commonly analyzed in 
economics, to analyze forecast changes while allowing 
for drift (i.e. a change in location) in the series.  Error 
series are examined here as well, though forecast drift 
will show up as consistent behavior.  

 

2.1 Forecast Revisions 
For each forecast series, fi, a forecast revision, Ri, 

is the change in the event forecast between two 
adjacent time steps, so it is the update.  

 
Ri = fi+1 − fi  

 
By subtracting the earlier forecast from the later, 

increases in the forecast will have a positive sign and 
decreases in the forecast will have a negative sign. 

 

2.2 Forecast Errors 
For each forecast series, fi, there is a single 

observation or realization, o. Thus, the error series is 
just a centered version of the forecast series. Forecast 
errors, ei, are the differences between each forecast and 
the actual observation of the event.  

 
ei = fi − o  

 
Overforecasts will have a positive sign while 

underforecasts will have a negative sign.  
 

3 METHODS 
The autocorrelation and Wald Wolfowitz tests are 

used to measure the association of forecasts through 
time. Two tests are included because each has different 
types of sensitivity and robustness, similar to use of the 
mean and median. The autocorrelation uses continuous 
measures, so it is sensitive but not robust. The Wald 
Wolfowitz uses categorical information, making it robust 
to outliers but less sensitive.  

Each test is shown with some example numerical 
weather forecast data. A thorough testing of these 
measures is not necessary since both have seen 
extensive use and documentation in both statistics and 
economics. The goal here is to demonstrate the 
potential utility of these measures for assessing the 
consistency of weather forecasts through time. The 
primary concerns for this application are short time 
series and weather variables with non-Gaussian 
distributions.  
 

3.1 Autocorrelation   
Autocorrelation measures the association 

(correlation) of values in a series to those that precede 
them in time (Box et al, 1994). Autocorrelation is 
generally calculated for several different ʻlagʼ values, 
where the lag value is the number of time steps by 
which one value precedes the other. Lag one 
autocorrelation measures the association of each 
measure with that immediately preceding it, etc.  

The autocorrelation is the same as the Pearson 
correlation, but using the lagged series. Thus, it is 
familiar to the weather forecasting community and 
simple to interpret. The distribution of the autocorrelation 
is known, allowing for simple determination of statistical 
significance (i.e. calculation of hypothesis tests and 
confidence intervals). However, the autocorrelation 
calculation is not robust. It is sensitive to outliers and 
lack of stationarity (a change in location and/or 
variability) in the time series.  

Autocorrelation of errors may tell us that our 
forecast is non-stationary. Autocorrelation of revisions 
can tell us if the forecast is stepping toward some new 
forecast value or zigzagging. This is not a measure of 
convergence, as both series may converge.  
 

3.2 Wald Wolfowitz (Runs) Test 
The Wald Wolfowitz test (1943) tests for the 

random distribution of ʻrunsʼ, or series of the same 
value, of two discrete categories. As an example, in this 
series of positive and negative values, +++++----++, 
there are three runs. For this analysis, the two 
categories are positive or negative. When analyzing the 
revisions, the positive and negative values indicate the 
direction of change of the forecast. For the errors, the 
bias must first be removed from the series. Then, the 
positive and negative are the direction of the bias-
adjusted errors. Without the bias adjustment, several 
series are completely positive or negative, and the Wald 
Wolfowitz statistic is undefined. Thus, the test cannot be 
run unless the series to be analyzed has at least two 
runs.  

We can calculate the expected number of runs if 
the two categories are arranged with respect to time at 
random. The two categories need not have equal 
probability. Then, a one sided test for too few runs will 
conclude if the series has fewer changes between 
negative and positive than would be expected from a 
random distribution of changes. A series with more 
changes than a random series is not consistent through 
time, so there is no need to have a two sided test.  

The runs test is very robust to outliers and to lack 
of stationarity in the time series, because the data are 
comprised only of two categories. However, a threshold 
for dividing the series into positive and negative values 
must be chosen. When series values lie very close to 



this threshold value, the test can be quite sensitive to 
the choice of threshold.  

Too few runs in the error series tell us that forecast 
mistakes are consistent. Too few runs in the revision 
series tell us that the forecast changes are consistent 
through time.  

 

4 RESULTS 

4.1 Forecast error assessment 
The bias corrected forecast errors display much 

consistency through time. An example showing the 
pressure error in updating forecasts for the four cities is 
shown in Figure 1. The forecast biases for each city are 
shown by the dashed lines. Both Denver and LA have 
ʻflatʼ error series, while Boston and Chicago have 
smaller errors at longer lead times (the opposite of what 
one would expect). The Boston and Chicago series 
show “drift”, or a change of location over time. The 
autocorrelation calculation detects the drift, and thus 
both Boston and Chicago have statistically significant 
values of the autocorrelation, r. Meanwhile, the 
autocorrelation values for Denver and LA are not 
significantly different from 0.  

 

 
Figure 1: Error series from updating pressure forecasts for 
Boston (B, black), Chicago (O, blue), Denver (D, red), and 
Los Angeles (L, green) by lead time. 

The runs test tells a slightly different story. The 
number of runs (NR) for each of the four cities is shown 
on the plot, along with the probability (p) of seeing that 
many or fewer runs in the series given a random 
distribution of errors above and below the bias. LA and 
Chicago, with 4 runs each, and Boston with 2 runs, all 
have so few runs that the probability that the errors are 
randomly distributed about the mean error (bias) is less 
than 5% for each. For Denver, with 5 runs, this 

probability is about 7%, not statistically significant when 
a customary error level of 5% is used.  

The Chicago error series demonstrates the 
sensitivity of the runs test to the threshold. Though the 
Chicago and Boston series are very similar looking, 
Boston has 2 runs while Chicago has 4. For Chicago, 
two values near the center of the series fall very near 
the bias, one on each side. This causes additional 
changes between positive and negative errors, resulting 
in 4 runs. A slight change in that bias value would result 
in only 2 runs.  

 

4.2 Forecast revision assessment 
Figure 2 shows an example of wind speed forecast 

revisions for the four cities. For all cities, the number of 
runs exceeds the expected number based on random 
fluctuation. Thus, none of the series is consistent 
through time with respect to the Wald Wolfowitz test. 
Similarly, all revision series lack positive first order 
autocorrelation, indicating a lack of consistency through 
time. Los Angeles has a statistically significant negative 
autocorrelation, indicating more “zigzagging” than 
random. This statistic confirms a similar conclusion that 
might be drawn by visual inspection.  

 

 
Figure 2: Series of forecast revisions for Boston (B), 
Chicago (O), Denver (D), and Los Angeles (L) by lead time. 

The revision series for all other weather variables 
and cities (not shown) had no significant association 
through time, as measured by either the Wald Wolfowitz 
test or by the autocorrelation. Thus, the revisions in 
those series could be considered to be noise. In 
particular, the series of pressure forecast revisions for 
Los Angeles and Chicago shows no association through 
time. The error series (and thus the forecast series) for 



those cities have drift, but the revision series does not. 
This demonstrates that tests on the revision series 
ignore drift while tests on the error series detect drift as 
association in the series.  

5 CONCLUSIONS AND FUTURE WORK 
Both the autocorrelation and the runs tests can 

measure association of forecasts through time, in 
complementary ways. Both are simple to calculate and 
understand, thoroughly documented, and have known 
distributions (useful for determining significance of 
results).  They can be used on any forecast series of a 
continuous variable. The two tests have different 
sensitivities and robustness, so users should consider 
which makes the most sense for each application.  

The runs (Wald Wolfowitz) test is robust to outliers 
and changes in variability. Use of this test on error 
series may require bias removal first. Further, since it is 
discrete, the runs test is sensitive to small changes near 
the “transition” line.  

Autocorrelation is the most common method of 
examining association of measurements through time. It 
is insensitive to bias, but sensitive to changes in location 
or variability of the series. 

A considerable amount of future work remains. 
Assessment of other types of forecasts, such as 
hurricane intensity and location, should be tested. 
Precipitation is typically only a conditionally continuous 
variable, and thus is unlikely to work well with either of 
these measures. It may be desirable to include several 
series of forecasts in a single test rather than examining 
only individual forecast series, so some other test 
statistics may be required.   
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