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1. Introduction

Tropical cyclones (TCs) are inherently difficult to predict. Despite substantial
recent improvements in track and to a lesser extent in intensity forecasts, there still
remain many challenges. Correctly predicting TC intensity is particularly difficult,
due to small-scale processes that range from fluctuations in intensity due to eyewall
replacement cycles, to fluctuations due to storm-scale processes that greatly
depend on the track, and interactions with the large scale environment. These
interdependencies cause TC forecasts to be probabilistic by nature.

The benefit of using ensembles requires that a large number of model runs
be realized for any given situation, so that the potential spectrum of possible
outcomes can be extracted. One of the difficulties with this approach is the need to
effectively communicate the spread of results from hundreds (or more) ensemble
members in a manner that is easy to understand and to use in decision-making.

We present here some visualization approaches for large ensemble TC
forecasting. The focus will be on providing information on the range of potential
outcomes, both spatially and temporally. This can only be a static presentation, but
in an interactive setting the display system should allow the user to easily modify,
subdivide, set parameters for, and animate these plots. Section two provides a brief
overview of the data and methodology used, section three discusses the results and
a brief summary concludes the paper.
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2. Data and Methodology

This study uses deterministic and ensemble forecasts from the European
Centre for Medium-Range Forecasts (ECMWF), issued twice per day at 0000 and
1200 UTC. The ensemble forecasts consist of 51 ensemble members. ECMWF
provides track data for each ensemble member. The data used here is on a 2°
latitude/longitude grid, with 17 vertical levels from the deterministic forecast, and
with 850 and 250 hPa winds from the ensemble forecasts.

Emanuel’s downscaling technique (Emanuel et al., 2006) is applied to data
that are derived from deterministic and ECMWF ensemble forecasts. The method
employed includes the generation and analysis of a large number of potential
tropical storms that can be supported by the large-scale environment provided in
the ensemble data. The derivation of the large-scale environment is accomplished
by surgically removing the ECMWF storms from each ensemble member using a
vorticity filter (see Fig. 1). A large number of TC tracks are generated using the

Figure 1: Example of vorticity filter at 850 hPa, for Igor on 1200 UTC 18 Sep 2010. The
unfiltered relative vorticity field (10-5> ms=<, left panel) shows the positions of Igor
(westernmost vorticity maximum) and Juliette (vorticity maximum to the northeast of
Igor). The filtered vorticity field (right panel) shows that the TCs have been effectively
removed.

method of Emanuel et al. (2008), with the covariances derived from both the
ECMWF storm tracks and the large-scale environmental winds. The Coupled
Hurricane Intensity Prediction System (CHIPS, Emanuel et al. 2004 and Emanuel
2006) is then used to predict storm intensities along each of the generated tracks, as
shown in Figure 2. In the final step, the simulated tracks and intensities are used to
generate a large ensemble of wind fields, which in turn can be further used for post-
processing and visualization. Some examples of visualizing the results are shown in
the next section.
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Figure 2: An example of generated track forecasts for Igor on 1200 UTC 18 Sep 2010.
The wind speeds are colored according to colorbar (in knots) to the right, and the
arrows at the end of the tracks indicate the translation speed of the tracks. Also shown
are the 51 ECMWF ensemble tracks (purple), the official NHC forecast (bold red line),
as well as the observed track (bold yellow line with blue dots every 12 hours).

3. Results

The map presented in Fig. 2 shows an example of the spatial distribution of
the generated ensembles for a particular forecast. An understanding of the temporal
evolution, in turn, can be obtained by visualizing the distribution along a timeline, as
shown in Figure 3. Here, the maximum wind speeds, in knots, of 100 individual
ensemble members are shown as a function of time (days since initialization). The
range of the daily track intensities is further summarized in the overlaid boxplot,
which in this case is based on the full ensemble set of 1000 generated tracks. The
boxes encompass the 25th and 75th percentiles, and the whiskers extend to
encompass all points that are not considered outliers. Outliers are plotted as red
plus signs outside of the distribution. The red thin line in the interior of the box
represents the median of the distribution. The intensities for the contemporaneous
official forecast from NHC (red line) and the final best track (yellow line) are also
shown. As can be as time increases, some simulated storms die out and the number
of tracks decreases. For example, the boxplot for day 1 represents the distribution
statistics for 1000 ensemble members, whereas at day 4 the number of tracks
represented in the boxplot is reduced to 562, and at day 9 the number of tracks
remaining is 16.
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Figure 3: Intensities for 100 ensemble tracks (gray lines), overlaid with boxplots based
on the 1000-member ensemble. The intensities for the contemporanous official
forecast from NHC (red line) and the final best track (yellow line) are also shown.

By separating tracks according to some user-defined attribute, such as track
position in latitude and longitude, more information can be extracted, as shown in
Figure 4. A k-mean clustering technique has been applied to the storm tracks, which
identifies three separate path regions as indicated by the red, blue and green
colored paths (left panel), and a time series of intensity has been prepared using the
same cluster identifiers (right hand panel). This information can be used to help
identify features from the storm environment that affect the storm, such as intensity
and timing. From a real-time forecasting perspective, this can be valuable
information, as this approach allows one to refine a forecast according to how the
observed track of the storm matches one of the suggested clusters. In this case, if the
real storm translates along the red cluster, i.e. moves further west and then recurves
sharply, then it would more likely weaken faster than if it had followed a path in the
blue cluster).
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Figure 4: Results of k-mean clustering of latitude/longitude for the first 66 hours for
the 100-member ensemble initialized on 1200 UTC 18 Sep 2010. The number of
clusters was set to 3 in this analysis. The clusters minimize the sum of the point to
cluster-centroid distances. The right hand panel shows the circular winds, i.e.,
translation speeds are not considered.

An example of an individual ensemble member’s wind speed field is shown in
Figure 5. The map shows the wind speeds for winds > 20 knots (colored contours in
knots) 36 hours into the forecast (valid time is 0000 UTC 20 Sep 2010). The
particular track shown passes west of Bermuda, with maximum forecast winds at
Bermuda of about 60 knots. The black line shows the past positions for this track,
the red line shows the contemporaneous forecast track from the NHC, and the
yellow line shows the best track for Igor.

It is not convenient, however, to inspect hundreds or thousands of maps in
order to assess the probable wind speed distribution for some particular location,
such as Bermuda. This information is more easily conveyed by using a probability
distribution of wind speed, as shown with the exceedance probabilities in Figure 6.
The histogram was constructed by computing the wind speed at a given latitude and
longitude for all 1000 generated storm tracks. It shows that at the target location
roughly 50% of the storms are associated with wind speeds in excess of 60 knots,
while only about 10% of the storms are forecast to produce 100 knot winds or more
at Bermuda’s airport.
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Figure 5: The 36-hour forecast wind (valid at 0000 UTC 20 Sep 2010) is contoured for
winds in 20 knots or greater. The black line is the past track for this ensemble
member. Also shown are the best track (yellow), and the official NHC forecast track

(red).
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Figure 6: Exceedance probability distribution of 36-hour forecast wind speed at
Bermuda airport (TXLF) using 1000 tracks.



Alternatively, a user might be interested in the spatial extent of the
probability distribution. To provide this, exceedance distributions are computed for
all points in the region of interest, from which exceedance probability maps can be
generated. An example of this is given in Figure 7, showing the probabilities of
winds exceeding the contoured wind speeds with a 50% probability (left panel) and
a 90% probability (right panel) level, respectively.
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Figure 7: Wind speeds (in knots) associated with a 50% peak wind exceedance
probability (left panel), and a 90% exceedance probability (right panel). The official
NHC forecast (bold red line), as well as the best track (bold yellow line) are overlaid.

Another alternative for visualizing the information contained in the large
ensemble is provided in Figure 8. Here, the ensemble mean wind for the 36-hour
forecast (c.f. Fig. 5, which showed the wind field for one ensemble member for that
same forecast hour) is shown in contours, and the variance around the mean wind
speed that is contained in all generated ensemble tracks is shown in the shaded
background. At this time the two lobes of wind speed uncertainty are, to a large
extent, the result of the TCs in different ensemble members moving at different
speeds.
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Figure 8: Variance of wind speed (shaded, in knots) and ensemble mean wind speed
[contoured in 10 kts increments], for a 36-hour forecast of Igor, issued on 1200 UTC 18
Sep 2010 (i.e., valid time is 0000 UTC 20 Sep 2010).

4. Summary

We developed the capability to generate hundreds or thousands of TC
forecasts for individual storms using Emanuel’s downscaling technique and
applying it to derived fields from ECMWF deterministic and ensemble forecasts. As
with all ensemble forecasts, efficient methods to communicate the results need to be
developed. The paper provides some experimental approaches that are intended to
easily communicate the results, and which might be useful in decision-making
processes. One of the challenges is to appropriately define the problem of
communicating uncertainty in many dimensions—from communicating the intrinsic
information contained in probabilistic forecasts, to finding different skill metrics
that are suitable for evaluating these forecasts. There are obviously many potential
approaches.

The work presented here provides some initial suggestions of how the data
contained in large ensemble data sets can be visualized. The methods shown will be
further refined in the near future.
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