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1. INTRODUCTION 
 

 There are inherent limitations to forecasting a 
single realization of the future state of the 
atmosphere due to its chaotic nature.  While 
numerical weather prediction (NWP) models have 
become more sophisticated in recent years and 
better represent and predict the atmospheric state, 
they are still limited because of imperfect model 
numerics, imperfect parameterizations of 
unresolved physical processes, and interpolations 
of input data that is sparsely located compared to 
current model grid resolutions.  In recognition of 
these difficulties, contemporary NWP uses 
ensembles of simulations.  Members in these 
ensembles often differ by imposed initial 
conditions (ICs), lateral and lower boundary 
conditions (LBCs), model physics 
parameterization schemes, and even the choice of 
NWP modeling system.  While the relationship 
between ensemble spread and forecast error is 
not linear, Grimit and Mass (2007) state that with 
larger ensemble spread, there is a larger 
probability of the forecast errors being larger, and 
vice-versa.   
 There are both inherent and practical 
limitations to ensemble forecasting as well.  The 
first limitation is that NWP ensembles are 
computationally expensive to run.  When faced 
with limited computing resources, trade-offs must 
be made when configuring the ensemble.  How 
fine can the horizontal and vertical resolution be?  
How many members can there be in the 
ensemble?  How big can the forecast domain be, 
and should it be nested in a larger and coarser 
outer domain?  How long can the forecast duration 
be?  All of these considerations are important, but 
they all compete for the same limited resources. 

 

 
 

* Corresponding author address:  Jared A. Lee, 
National Center for Atmospheric Research, P.O. Box 
3000, Boulder, CO  80507-3000; 
e-mail: jal488@meteo.psu.edu. 

 A second limitation is that the forecast 
variances in ensemble forecast systems tend to be 
uncalibrated (Raftery et al. 2005).  If an ensemble 
is perfectly calibrated, then the forecast error 
variance and ensemble-mean variance will have a 
1:1 ratio (e.g., Grimit and Mass 2007; Kolczynski 
et al. 2009).  In other words, if a meteorological 
ensemble is uncalibrated, then the forecast 
uncertainty cannot be properly diagnosed from the 
ensemble spread.  Kolczynski et al. (2011) show 
that, using a stochastic ensemble, even perfectly 
constructed ensembles with fewer than hundreds 
of members will be uncalibrated.  Unfortunately, 
given current computing resources at most 
institutions, including operational centers, it is not 
practical to run an NWP ensemble with hundreds 
of members, so steps must be taken to calibrate 
ensembles before forecast uncertainty can be 
properly assessed.  This is beyond the need for 
calibration due to deficiencies in ensemble 
construction, which could necessitate calibration 
no matter how many members are used. 
 There are many applications for which NWP 
ensemble forecasting is useful.  One of these 
applications is atmospheric transport & dispersion 
(AT&D) forecasting, as AT&D models such as the 
Second-order Closure Integrated Puff (SCIPUFF) 
model (Sykes et al. 2004) are often driven by 
NWP ensemble model output (e.g., Warner et al. 
2002; Lee et al. 2009).  Another application is wind 
power forecasting where uncertainty metrics are 
needed (Liu et al. 2007).  To obtain appropriate 
spread in concentration predictions from AT&D 
models, there should be ”good spread” in low-level 
wind direction and atmospheric boundary layer 
(ABL) depth, as these are two of the most 
important parameters affecting uncertainty in 
AT&D predictions (Lewellen and Sykes 1989).  By 
“good spread” we mean increased ensemble 
variance that improves the calibration, reliability, 
and resolution of the ensemble (Eckel and Mass 
2005).  Therefore, when evaluating the 
performance of ensemble configurations for this 
study, emphasis is placed on NWP ensemble 
verification against observations of parameters in 
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the ABL, such as 10-m winds and 2-m 
temperature.  For other applications there may 
need to be good spread in other parameters in 
order to provide useful ensemble forecasts, and 
other variables may be more important for 
verification purposes. 
 It is not clear a priori how best to configure a 
useful ensemble for AT&D applications, or if that 
particular configuration would be the most useful 
for other applications, such as quantitative 
precipitation forecasting.  Therefore, some testing 
is necessary.  There are a large number of 
possible choices of IC, LBC, and physics 
perturbations that can be included in an NWP 
ensemble for any given application.  The primary 
aim of this study is to propose an objective 
methodology to “down-select,” or determine which 
subset of members should be included in an 
ensemble, assuming that it is impractical to 
include all the members.  In this study we 
configure an ensemble to predict low-level winds, 
although our methodology should be useful for 
other applications as well.  Details about our 
ensemble and the verification data that we used 
are discussed in section 2.  
 Naturally, down-selection may alter the 
ensemble mean often used as the “best guess” 
forecast, as well as exacerbate the calibration 
problem.  These downsides result both because 
we will have fewer members and because, by 
preferentially choosing specific members, we 
further alter the natural probability distribution 
function (PDF) of the ensemble.  Therefore, for 
down-selection to be successful, we need to 
employ post-processing methods that will help 
maintain an accurate best guess, and ideally 
calibrate the ensemble variance as well. 
 The first post-processing method used is 
principal component analysis (PCA).  In this study 
PCA is our primary method for defining candidate 
down-selected ensemble subsets.  PCA will be 
discussed further in section 3.  The ensemble 
calibration method used in this study is Bayesian 
model averaging (BMA).  BMA is a statistical post-
processing method introduced to the atmospheric 
sciences by Raftery et al. (2003, 2005), and is 
used to correct for the underdispersive, and thus 
uncalibrated, nature of forecast ensembles.  Our 
BMA application will be discussed in section 4 of 
this paper.  Finally, section 5 will include an overall 
summary of the study and list avenues of future 
research. 

 

2.  DATA 
 
2.1.  Ensemble configuration 

 
 While we recognize the likely importance of 
IC/LBC perturbations even in short-range 
mesoscale NWP, we choose to test our 
methodology on a physics ensemble for simplicity.  
Additionally, if we assume that we could use an 
IC/LBC perturbation method that results in equally 
likely perturbations, then ignoring IC/LBC 
perturbation does not affect the performance of 
our physics members.  Indeed, removing the 
random signal of IC/LBC perturbation may provide 
clearer results. 
 Our 24-member physics ensemble for this 
study is created with version 3.2 of the Weather 
Research and Forecasting (WRF) Advanced 
Research WRF (ARW) NWP model (Skamarock et 
al. 2008).  The microphysics and atmospheric 
radiation schemes (both longwave and shortwave) 
are the same for each ensemble member, but the 
land surface, surface layer, boundary layer and 
cumulus scheme configuration varied for each 
member, as detailed in Table 1.  There are 45 full 
vertical levels in each simulation, with the lowest 
full level at 24 m AGL, 9 full levels below 500 m 
AGL, 16 full levels below 1 km AGL and 24 full 
levels below 2 km AGL.  The model top is at 50 
hPa.  Such high vertical resolution in the lowest 
portions of the troposphere is chosen because this 
study focuses on processes occurring in the ABL.  
Two model domains are used.  The coarse 
domain uses a horizontal grid spacing of 36 km 
and a time step of 180 s, while the nested domain 
uses 12-km grid spacing and a 60-s time step.  
The coarse domain encompasses the continental 
United States (CONUS), and the nested domain 
covers the Great Lakes, Ohio Valley, Mid-Atlantic 
and Northeast, as shown in Figure 1. 
 For each month of June-July-August 2009, six 
forecast periods are randomly chosen, with three 
being initialized at 0000 UTC and three being 
initialized at 1200 UTC, to avoid biasing our 
results with the diurnal cycle.  In total there are 18 
forecast times chosen for this summer evaluation 
period, with a forecast period of 48 h in all cases.  
No data assimilation is used during the model 
integration for this study, because we desire to 
simulate a forecasting system, rather than a 
hindcasting system.  The LBCs for all 24 members 
in this study come from the 0.5°×0.5°-resolution 
Global Forecast System (GFS) forecast cycles 
initialized at each of the randomly chosen forecast 
times.  For the ICs the 0-h GFS analysis is 
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blended with standard WMO observations to 
provide a more accurate initial state. 

 
2.2.  Verification and quality control 

 
 To verify our WRF ensemble forecasts, we 
use standard WMO observations.  These 
observations are quality-controlled against the 
WRF Pre-processing System (WPS)-interpolated 
GFS forecast fields, using the Obsgrid software 
developed and released by the National Center for 
Atmospheric Research (NCAR).  We implement 
some additional quality control checks, including 
rejecting any surface observations with a reported 
elevation higher than 600 hPa, and rejecting 
surface observations where the reported elevation 
differed from the model terrain by more than 200 
m.  We find that blending observations into the 
initial conditions with Obsgrid improved our 
verification scores, and that implementing these 
additional quality control checks improve our 
verification scores even further. 
 Of the 18 forecasts created for the summer 
evaluation period, six are randomly chosen to be 
set aside for verification purposes.  The remaining 
12 forecasts are used as training data for both the 
down-selection process and for calibration 
purposes.  Table 2 lists which forecast periods are 
used for the training period and which were used 
for the verification period.  Three different 
diagnosed quantities are used for verification: 10-
m above ground level (AGL) zonal wind (u), 10-m 
AGL meridional (v) wind, and 2-m AGL 
temperature.   
 We measure the performance of the calibrated 
ensemble of both a deterministic forecast and a 
probabilistic forecast.  Here we consider root-
mean squared error (RMSE) as our primary 
deterministic measure and cumulative rank 
probability score (CRPS) as our primary 
probabilistic measure.  The root-mean squared 
error is defined as: 
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before. 
 Rank histograms are another verification tool 
we use to assess the reliability of the ensemble 

forecasts.  For an ensemble containing 
ens

n  

members, verification rank histograms are created 
by binning each verifying observation within the 

1
ens

n  -member distribution.  These histograms 

are frequently used to diagnose the bias and 
dispersion of ensembles, and ensembles that 
exhibit no biases and are neither underdispersive 
nor overdispersive have rank histograms that are 
approximately flat (Wilks 2006).  We also use the 
continuous analog of the verification rank 
histogram, which is the probability integral 
transform (PIT) histogram.  PIT histograms are 
defined by evenly spacing the bins throughout the 
forecast distribution (Raftery et al. 2005). 

 
3.  ENSEMBLE MEMBER DOWN-SELECTION 
 
3.1.  PCA 
 
 In order to down-select to a smaller number of 
ensemble members, the first step is to calculate 
the errors of each of the ensemble member 
forecasts.  The goal of our ensemble down-
selection technique is to remove redundant 
members and retain the members that contribute 
to the forecast accuracy and spread.  This goal 
arises both because computational resources are 
generally too limited to allow for very large 
ensembles, and because ensembles are most 
useful when each member contribute to the 
forecast variability.  To accomplish this, we utilize 
principal component analysis (PCA).  PCA is a 
useful mathematical technique to apply to large 
datasets with correlated variables, which reduces 
the dataset by identifying a smaller number of 
uncorrelated variables, or principal components 
(PCs) (Jolliffe 2002; Wilks 2006; Witten and Frank 
2005).  Principal components are and the 
eigenstructures ordered so that the lowest PCs 
contain the maximum amount of variance.  We 
then truncate the set so that the first several PCs 



4 
 

that represent 95% of the variability of the data are 
used to represent the dataset (Jolliffe 2002).  
Figure 2 shows a plot of the cumulative variance 
for our PCs and where we truncate to maintain 
95% of the variance, shown as a solid red line for 
2-m temperature at a forecast lead time of 12 h.  
We use PCA here to capture the maximum 
variability in the forecast errors and then 
determine which ensemble members contributed 
most to those PCs. 
 The goal of the PCA is to determine which 
ensemble members contribute most to the 
variability in the forecast errors; thus, the first step 
was to perform PCA on the dataset of forecast 
errors to identify the number of ensemble 
members that contributed to the 95% cumulative 
variance.  In addition to testing the 95% 
cumulative variance threshold for the number of 
principal components to use, we also 
experimented with the 90% threshold as a cut-off.  
The freely available off-the-shelf software program 
RapidMiner is used to perform the PCA here 
(Mierswa et al. 2006). 
 For the three different weather variables we 
verify against in this study, 10-m zonal (u) wind, 
10-m meridional (v) wind, and 2-m temperature, 
each at four different forecast lead times, 12-h, 24-
h, 36-h, and 48-h, PCA identifies between four and 
seven PCs that account for 95% of the variability 
during the training period.  After determining the 
appropriate number of PCs for each variable at 
each lead time, the next step is to determine which 
ensemble member contributed most to each of 
those PCs.   
 The number of times each ensemble member 
contributes to each PC is tallied.  Four different 
subsets of ensemble members are defined: subset 
A, containing the top-contributing members to PCs 
that as a group account for 95% of cumulative 
forecast variability; subset B, containing the top-
contributing members to PCs that each account 
for at least 2.0% of forecast variability to PCs; 
subset C, containing the top-contributing members 
to PCs that as a group account for 90% of 
cumulative forecast variability; and subset D, 
containing the most frequent top-contributing 
members to PCs that account for 95% of 
cumulative forecast variability.  Details of which 
ensemble members are included in each 
candidate subset for the nested 12-km domain are 
listed in Table 3.  The size and membership of 
each subset is unique to this particular domain 
configuration; the PCA method selects different a 
different set and number of members for the 36-
km domain, both over the full domain and the 12-
km sub-domain.  Thus ensemble performance 

depends upon both the specific region covered by 
and the resolution of the simulations. 

 
3.2.  Correlation Analysis 
 
 When down-selecting to a subset of ensemble 
members, it is desirable to try to exclude members 
that provide redundant information.  One method 
that can shed light on whether certain members 
are providing redundant information is correlation 
analysis.  We choose to correlate the forecast 
errors for each ensemble member. 
 We compute correlations of the errors 
between all ensemble members for each forecast 
parameter at each forecast lead time.  Error 
correlations for 24-h forecasts of 2-m temperature 
and 10-m zonal wind are shown in Tables 4 and 5, 
respectively.  The tables are symmetric, so half of 
each table is color-coded as a visual aid, with 
warmer colors highlighting stronger correlations, 
and cooler colors highlighting weaker correlations 
between the forecast errors in the ensemble 
members.  The results discussed below are for the 
12-km domain, but results are similar for both the 
same area with 36-km resolution and for the full 
36-km domain.  Thus we have greater confidence 
when attributing physical explanations to our 
results. 
 Some interesting patterns appear in the error 
correlations.  For 2-m temperature forecasts, error 
correlations tend to be grouped according to what 
land surface model was used in each member 
(Table 4).  For all members, the highest 
correlations are with all other members that share 
the same land surface scheme (see Table 1 for 
the physics configuration used for each ensemble 
member).  The next-highest correlations are 
between pairs of land surface schemes.  Members 
that used the Thermal Diffusion land surface 
scheme and the Pleim-Xu land surface model had 
highly correlated errors.  The same is true for 
members that used the Noah and Rapid Update 
Cycle (RUC) land surface models, although those 
correlations are slightly weaker.  The weakest 
correlations are between members that used 
either the Noah or RUC land surface models and 
those that use either the Thermal Diffusion or 
Pleim-Xu land surface schemes.  These results 
indicate that the choice of land surface scheme 
has a substantial impact on 2-m temperature 
forecasts.  This makes sense because different 
land surface models represent surface energy and 
moisture fluxes somewhat differently.  This 
impacts surface temperature because processes 
in the surface layer are dominated by interactions 
with the land surface (Wyngaard 2010).  Another 
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pattern worth noting from Table 4 is that 
correlations are also quite high between members 
that are identical except for the cumulus scheme.  
This is not an entirely surprising result, as the 
cumulus scheme only has an indirect effect on the 
model surface temperature by producing 
precipitation and downdrafts.  Thus, to achieve 
greater variability in 2-m temperature forecasts, 
ensembles should contain diversity in land surface 
schemes. 
 For 10-m wind forecasts, error correlations 
tend to be grouped according to the choice of 
boundary layer scheme (Table 5).  Correlations 
are generally strongest between members that 
share the same boundary layer scheme, and 
especially between members that share both the 
same boundary layer and cumulus schemes.  This 
result indicates that the choice of ABL scheme, 
and the cumulus scheme to a lesser extent, has a 
substantial impact on 10-m wind forecasts.  This is 
due to the fact that the ABL schemes differ in how 
they model the dynamics and structure of the ABL.  
That the cumulus scheme appears to have a 
secondary effect on 10-m wind forecast error 
correlations because low-level model winds are 
generally only affected by the cumulus scheme in 
regions where the model produces precipitation.  
Thus, to achieve greater variability in 10-m wind 
forecasts, ensembles should contain diversity in 
boundary layer schemes and, somewhat less 
importantly, cumulus schemes. 

 
4.  ENSEMBLE CALIBRATION 
 
 Our calibration technique is Bayesian Model 
Averaging (BMA) (Raftery et al. (2003).  BMA 
improves ensemble forecasts by estimating the 
best weights and parameters for each ensemble 
member to make a smooth PDF.  Weights and 
parameters are trained to best match the 
observations during some training period, then 
applied to future forecasts to create a full PDF of 
the ensemble forecast. 
 A first step in BMA determines the functional 
form of the posterior distributions of the ensemble.  
For temperature, we use a normal distribution, as 
in Raftery et al. (2005).  For vector quantities, 
however, selecting the distribution is more difficult 
because the vectors are described by two (or 
more) different scalar quantities that are related.  
Here we define the horizontal wind in terms of 
zonal (u) and meridional (v) components.  
Sloughter et al. (2010) use an alternate approach 
by decomposing wind into speed and direction, 
then using a gamma distribution for the wind 

speed, which allows us to use a normal posterior 
distribution for each wind component. 
 While earlier studies using BMA have focused 
on calibrating for specific forecast locations 
independently, we have chosen to calibrate on all 
locations simultaneously.  This is important for our 
future applications, as we intend to apply BMA 
over an entire forecast region for insertion into an 
AT&D model, rather than forecasting at specific 
point locations. 
 Each of the three variables (2-m AGL 
temperature, 10-m AGL u, 10-m AGL v) is 
calibrated independently.  Each forecast lead time 
(12, 24, 36 and 48 h) is also calibrated separately. 
 BMA weights are calculated for each forecast 
parameter and lead time during the training period 
on the 12-km domain.  The optimal BMA weights 
for 2-m temperature forecasts are displayed in a 
donut chart in Figure 3.  From that figure we see 
that the ensemble members that use the Noah 
land surface model generally have the highest 
weights early in the forecast period, followed by 
members that use the RUC land surface model.  
The members with the smallest BMA weights use 
the thermal diffusion and Pleim-Xu land surface 
schemes.  As with the forecast error correlation 
results, this again indicates that the choice of land 
surface scheme has a large impact on 2-m 
temperature model predictions.  Additionally, these 
results imply that the Noah and RUC land surface 
models yield better 2-m temperature forecasts 
over the training period.  It should also be noted 
that these patterns are most prevalent for 12-h 
and 24-h forecasts, but the BMA weights tend to 
become more even at 48-h lead time. 
 The optimal BMA weights for the 10-m zonal 
wind forecasts are displayed in Figure 4.  The 
ensemble members that use the ACM2 boundary 
layer scheme generally have higher weights than 
those with the MYJ boundary layer scheme.  The 
members that use the YSU boundary layer 
scheme generally have the lowest weights.  Again, 
as with the forecast error correlation results, this 
indicates that the choice of boundary layer 
scheme has a substantial impact on model 
predictions of 10-m winds. 
 To assess the value of the calibration provided 
by BMA, the equal-weighted and BMA-weighted 
ensembles on the 12-km domain are compared 
with verification metrics over the verification 
period.  To evaluate the performance of the 
ensemble as a deterministic forecast, we use 
RMSE to compare a weighted ensemble mean 
(using the BMA weights) to the standard (equally 
weighted) ensemble mean.  For each forecast 
lead time and variable, the RMSE for the BMA-
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weighted ensemble is slightly lower than or the 
same as the RMSE for the equal-weighted 
ensemble (see Figure 5). 
 Rank histograms are used to evaluate the 
distribution of the ensemble.  Figure 6a shows a 
verification rank histogram for the 24-h forecasts 
of 10-m zonal wind for the equal-weighted 
ensemble, and the ensemble is clearly quite 
underdispersive.  Figure 6b shows a PIT 
histogram for the 24-h forecasts of 10-m zonal 
wind for the BMA-weighted ensemble.  By 
comparing Fig. 6b with Fig. 6a, it is clear that the 
BMA-weighted ensemble is less underdispersive.  
In other words, the calibration performed by the 
BMA made the ensemble more reliable than it was 
before. 
 We use CRPS to evaluate the overall 
probabilistic predictions of the ensemble.  CRPS is 
calculated over the 12-km domain for each 
forecast lead time and variable.  The CRPS values 
for the equal-weighted and BMA-weighted 
ensembles are plotted in Figure 7, for the full 
ensemble and each of the four candidate subsets 
defined by PCA (see Table 3).  For all variables, 
lead times and ensemble sizes, the BMA-weighted 
ensembles have CRPS values that are 
approximately 10-15% lower (better) than for the 
corresponding equal-weighted ensembles.  This 
result illustrates that the BMA-weighted ensemble 
forecasts were substantially improved when 
compared to the equal-weighted ensemble 
forecasts.  For the BMA-weighted ensembles, the 
CRPS slightly increases (worsens) as ensemble 
size decreases from 24 to 20 to 14 to 12 
members, and is approximately 5-10% worse yet 
when ensemble size becomes very small (5 
members).  It is not surprising that the CRPS is 
noticeably poorer for mini-ensembles, because 
there are only a few forecast-specific data 
contributing to the forecast ensemble PDF. 

 
5.  DISCUSSION AND CONCLUSIONS 
 
 The main goal of this study is to propose an 
objective methodology to “down-select,” or 
determine which subset of members should be 
included in an ensemble used for forecasting 
applications for which short-range low-level wind 
prediction is of primary importance.  Then we use 
Bayesian model averaging to fill in the details of 
the PDF.  The NWP dataset on which we 
demonstrate this proposed methodology is a 24-
member WRF-ARW physics ensemble over 18 
forecast periods during summer 2009.  Our down-
selection methodology centers on using principal 
component analysis to determine the ensemble 

members whose forecast errors were contributing 
most to variability in the forecast.  Using PCA, we 
define four candidate ensemble subsets of various 
sizes, ranging from 5 to 20 members, for the 
nested 12-km domain.  Somewhat different 
candidate subsets are defined using the 36-km 
domain. 
 To improve forecast reliability by statistically 
filling in the PDF, we then calibrate the full 
ensemble and each subset ensemble using 
Bayesian model averaging.  The BMA-calibrated 
ensembles perform as well as or better than the 
equal-weighted, uncalibrated ensemble by several 
metrics that are computed over each forecast lead 
time (12, 24, 36, and 48 h) and forecast variable 
(2-m AGL temperature, 10-m AGL zonal wind 
component, and 10-m meridional wind 
component).  First, the RMSE for the BMA-
calibrated ensemble shows no change or a slight 
improvement for the equal-weighted ensemble.  
Second, rank histograms indicate that the BMA-
weighted ensemble is substantially less 
underdispersive than the equal-weighted 
ensemble.  Third, the CRPS for the BMA-weighted 
ensemble show a 10-15% improvement compared 
to the equal-weighted ensemble.  Therefore, we 
conclude that the BMA calibration improves the 
quality of the ensemble forecasts substantially. 
 Correlations of both forecast errors across the 
ensemble and BMA weights for all the ensemble 
members reveal that model predictions of 2-m 
temperature are greatly influenced by the choice 
of land surface scheme, and that model 
predictions of 10-m winds are greatly influenced 
by the choice of boundary layer scheme, and to a 
lesser extent by the choice of cumulus 
parameterization scheme.  Therefore, we 
conclude that for any subset to have sufficient 
variability in the structure and dynamics of the 
ABL, it must include diversity in land surface and 
boundary layer schemes, and should also have 
diversity in cumulus schemes. 
 Additionally, for the BMA-calibrated 
ensembles, the CRPS is roughly the same for the 
full ensemble (24 members), subset A (20 
members), subset B (14 members), and subset C 
(12 members), but 5-10% worse for subset D (5 
members).  Thus, BMA appears to be successful 
at reconstructing the PDF of the down-selected 
ensemble, as long as a sufficient number of 
members is included to capture the primary 
sources of variability.  Based on this result and the 
importance of including a diversity of land surface, 
boundary layer, and cumulus parameterization 
schemes, we recommend subset C as an 
ensemble for applications concerned with low-
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level wind forecasting.  Subset C does contain a 
diversity of physics options, and gave forecasts of 
similar quality as the full ensemble for half the 
computational cost (12 vs. 24 members). 
 This study is preliminary and we must 
acknowledge several caveats.    First, it is 
unknown how these results depend on 
seasonality.  The down-selection results are 
somewhat different for the different domains and 
resolutions; thus the results may differ somewhat 
by season as well.  Second, when creating this 
ensemble we assumed that diversity in 
microphysics or radiation schemes would not add 
substantial variability to the ensemble.  This 
assumption should be tested.  Therefore, we plan 
to explore the seasonal dependence of this down-
selection method by creating a larger WRF-ARW 
ensemble that varies additional physics schemes 
over a four-season period.  Third, while we 
calibrate each of the three forecast variables 
independently in this study, we recognize this may 
not be an ideal approach, especially with the 
related zonal and meridional wind fields.  This is a 
logical initial approach that we hope to refine in 
future research.  We also plan to explore other 
post-processing techniques, such as k-means 
clustering and self-organizing maps.  We also plan 
to investigate additional calibration techniques.  
Additionally, we plan to verify ensemble 
predictions against other observations in the ABL, 
rather than just surface temperature and wind. 
 This study describes a way to use statistical 
post-processing to down-select the members of an 
ensemble that contribute the most variability, then 
to “dress” the PDF of the ensemble using BMA.  
The combination of post-processing ensemble 
forecasts with PCA and BMA over a short 
evaluation period provides an objective method for 
determining which subset ensemble members 
should be included in a longer-term forecast 
ensemble.  This is particularly relevant given the 
nearly ubiquitous constraint on computational 
resources that most companies, universities and 
research centers face.  By filling in the ensemble 
PDF with BMA, we regain the appropriate 
reliability as demonstrated in the PIT histograms.  
While in this study we focused on down-selecting 
an ensemble for low-level wind forecasting 
applications, the same principles outlined in this 
study could be applied to other forecasting 
applications, by verifying against the relevant 
variables. 
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TABLES AND FIGURES 
 

 
TABLE 1.  Physics parameterizations for the WRF-ARW ensemble members used in this study. 

Member Microphysics Longwave 
Radiation 

Shortwave 
Radiation 

Land 
Surface 

Surface 
Layer 

Boundary 
Layer 

Cumulus 

01 WSM 5-class RRTMG RRTMG Thermal Diff. MM5 Similarity YSU Kain-Fritsch 

02 WSM 5-class RRTMG RRTMG Thermal Diff. MM5 Similarity YSU Grell-Devenyi 

03 WSM 5-class RRTMG RRTMG Noah MM5 Similarity YSU Kain-Fritsch 

04 WSM 5-class RRTMG RRTMG Noah MM5 Similarity YSU Grell-Devenyi 

05 WSM 5-class RRTMG RRTMG RUC MM5 Similarity YSU Kain-Fritsch 

06 WSM 5-class RRTMG RRTMG RUC MM5 Similarity YSU Grell-Devenyi 

07 WSM 5-class RRTMG RRTMG Pleim-Xu MM5 Similarity YSU Kain-Fritsch 

08 WSM 5-class RRTMG RRTMG Pleim-Xu MM5 Similarity YSU Grell-Devenyi 

09 WSM 5-class RRTMG RRTMG Thermal Diff. Eta Similarity MYJ Kain-Fritsch 

10 WSM 5-class RRTMG RRTMG Thermal Diff. Eta Similarity MYJ Grell-Devenyi 

11 WSM 5-class RRTMG RRTMG Noah Eta Similarity MYJ Kain-Fritsch 

12 WSM 5-class RRTMG RRTMG Noah Eta Similarity MYJ Grell-Devenyi 

13 WSM 5-class RRTMG RRTMG RUC Eta Similarity MYJ Kain-Fritsch 

14 WSM 5-class RRTMG RRTMG RUC Eta Similarity MYJ Grell-Devenyi 

15 WSM 5-class RRTMG RRTMG Pleim-Xu Eta Similarity MYJ Kain-Fritsch 

16 WSM 5-class RRTMG RRTMG Pleim-Xu Eta Similarity MYJ Grell-Devenyi 

17 WSM 5-class RRTMG RRTMG Thermal Diff. Pleim-Xu ACM2 Kain-Fritsch 

18 WSM 5-class RRTMG RRTMG Thermal Diff. Pleim-Xu ACM2 Grell-Devenyi 

19 WSM 5-class RRTMG RRTMG Noah Pleim-Xu ACM2 Kain-Fritsch 

20 WSM 5-class RRTMG RRTMG Noah Pleim-Xu ACM2 Grell-Devenyi 

21 WSM 5-class RRTMG RRTMG RUC Pleim-Xu ACM2 Kain-Fritsch 

22 WSM 5-class RRTMG RRTMG RUC Pleim-Xu ACM2 Grell-Devenyi 

23 WSM 5-class RRTMG RRTMG Pleim-Xu Pleim-Xu ACM2 Kain-Fritsch 

24 WSM 5-class RRTMG RRTMG Pleim-Xu Pleim-Xu ACM2 Grell-Devenyi 
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TABLE 2.  Randomly chosen forecast initialization times for the training set (italics) and verification set 
(bold). 

2009-06-06_12 2009-07-11_00 2009-08-01_12 

2009-06-07_00 2009-07-19_12 2009-08-06_12 

2009-06-16_00 2009-07-22_12 2009-08-15_00 

2009-06-17_00 2009-07-23_00 2009-08-17_00 

2009-06-23_12 2009-07-27_12 2009-08-18_00 

2009-06-29_12 2009-07-31_00 2009-08-28_12 

 
 
 
 
 
 
 
 
TABLE 3.  Summary of which members were included in each candidate ensemble subset for the 12-km 
domain.  See text for description of how each subset was defined. 

Subset Ensemble Size Ensemble Members 

A 20 members 01, 02, 03, 04, 05, 06, 08, 09, 10, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24 

B 14 members 01, 03, 05, 06, 08, 13, 14, 16, 18, 19, 20, 22, 23, 24 

C 12 members 01, 03, 05, 06, 13, 14, 16, 19, 20, 22, 23, 24 

D 5 members 05, 06, 13, 14, 22 
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TABLE 4.  Error correlations between every ensemble member for 24-h forecasts of 2-m temperature on the 12-km domain.  Warm colors (red and 
orange) denote stronger correlations, and cool colors (yellow and green) denote weaker correlations. 

 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

01 1.000 0.944 0.833 0.779 0.780 0.736 0.873 0.833 0.905 0.861 0.781 0.754 0.846 0.798 0.862 0.821 0.899 0.881 0.748 0.734 0.823 0.798 0.854 0.826 

02 0.944 1.000 0.820 0.836 0.771 0.790 0.856 0.874 0.874 0.884 0.768 0.782 0.840 0.828 0.857 0.856 0.879 0.896 0.748 0.778 0.813 0.826 0.836 0.846 

03 0.833 0.820 1.000 0.933 0.787 0.751 0.744 0.722 0.776 0.771 0.861 0.841 0.794 0.755 0.727 0.704 0.775 0.756 0.849 0.818 0.800 0.783 0.662 0.634 

04 0.779 0.836 0.933 1.000 0.763 0.799 0.717 0.754 0.733 0.780 0.819 0.861 0.766 0.772 0.706 0.730 0.740 0.757 0.813 0.846 0.767 0.796 0.634 0.644 

05 0.780 0.771 0.787 0.763 1.000 0.944 0.684 0.674 0.695 0.699 0.742 0.741 0.850 0.821 0.690 0.679 0.711 0.714 0.761 0.755 0.861 0.855 0.651 0.649 

06 0.736 0.790 0.751 0.799 0.944 1.000 0.661 0.704 0.664 0.717 0.722 0.765 0.829 0.837 0.678 0.707 0.689 0.723 0.742 0.781 0.825 0.868 0.629 0.661 

07 0.873 0.856 0.744 0.717 0.684 0.661 1.000 0.952 0.870 0.850 0.700 0.684 0.797 0.758 0.931 0.898 0.841 0.836 0.654 0.650 0.740 0.719 0.925 0.901 

08 0.833 0.874 0.722 0.754 0.674 0.704 0.952 1.000 0.836 0.869 0.673 0.706 0.777 0.781 0.906 0.927 0.823 0.848 0.642 0.677 0.724 0.742 0.891 0.916 

09 0.905 0.874 0.776 0.733 0.695 0.664 0.870 0.836 1.000 0.929 0.807 0.759 0.865 0.807 0.928 0.876 0.932 0.903 0.732 0.703 0.811 0.778 0.886 0.852 

10 0.861 0.884 0.771 0.780 0.699 0.717 0.850 0.869 0.929 1.000 0.764 0.812 0.845 0.874 0.896 0.927 0.903 0.912 0.719 0.728 0.803 0.805 0.846 0.854 

11 0.781 0.768 0.861 0.819 0.742 0.722 0.700 0.673 0.807 0.764 1.000 0.912 0.814 0.724 0.766 0.707 0.760 0.738 0.920 0.878 0.751 0.735 0.703 0.668 

12 0.754 0.782 0.841 0.861 0.741 0.765 0.684 0.706 0.759 0.812 0.912 1.000 0.774 0.787 0.736 0.757 0.738 0.752 0.881 0.897 0.738 0.762 0.671 0.675 

13 0.846 0.840 0.794 0.766 0.850 0.829 0.797 0.777 0.865 0.845 0.814 0.774 1.000 0.918 0.842 0.806 0.843 0.829 0.763 0.735 0.877 0.850 0.791 0.771 

14 0.798 0.828 0.755 0.772 0.821 0.837 0.758 0.781 0.807 0.874 0.724 0.787 0.918 1.000 0.795 0.837 0.820 0.837 0.714 0.728 0.853 0.860 0.746 0.759 

15 0.862 0.857 0.727 0.706 0.690 0.678 0.931 0.906 0.928 0.896 0.766 0.736 0.842 0.795 1.000 0.937 0.883 0.872 0.703 0.690 0.766 0.747 0.941 0.913 

16 0.821 0.856 0.704 0.730 0.679 0.707 0.898 0.927 0.876 0.927 0.707 0.757 0.806 0.837 0.937 1.000 0.855 0.874 0.666 0.693 0.745 0.763 0.894 0.915 

17 0.899 0.879 0.775 0.740 0.711 0.689 0.841 0.823 0.932 0.903 0.760 0.738 0.843 0.820 0.883 0.855 1.000 0.962 0.760 0.735 0.859 0.824 0.864 0.837 

18 0.881 0.896 0.756 0.757 0.714 0.723 0.836 0.848 0.903 0.912 0.738 0.752 0.829 0.837 0.872 0.874 0.962 1.000 0.740 0.769 0.834 0.850 0.848 0.866 

19 0.748 0.748 0.849 0.813 0.761 0.742 0.654 0.642 0.732 0.719 0.920 0.881 0.763 0.714 0.703 0.666 0.760 0.740 1.000 0.937 0.775 0.762 0.677 0.648 

20 0.734 0.778 0.818 0.846 0.755 0.781 0.650 0.677 0.703 0.728 0.878 0.897 0.735 0.728 0.690 0.693 0.735 0.769 0.937 1.000 0.742 0.788 0.664 0.686 

21 0.823 0.813 0.800 0.767 0.861 0.825 0.740 0.724 0.811 0.803 0.751 0.738 0.877 0.853 0.766 0.745 0.859 0.834 0.775 0.742 1.000 0.951 0.719 0.700 

22 0.798 0.826 0.783 0.796 0.855 0.868 0.719 0.742 0.778 0.805 0.735 0.762 0.850 0.860 0.747 0.763 0.824 0.850 0.762 0.788 0.951 1.000 0.694 0.723 

23 0.854 0.836 0.662 0.634 0.651 0.629 0.925 0.891 0.886 0.846 0.703 0.671 0.791 0.746 0.941 0.894 0.864 0.848 0.677 0.664 0.719 0.694 1.000 0.954 

24 0.826 0.846 0.634 0.644 0.649 0.661 0.901 0.916 0.852 0.854 0.668 0.675 0.771 0.759 0.913 0.915 0.837 0.866 0.648 0.686 0.700 0.723 0.954 1.000 
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TABLE 5.  Same as Table 4, but for 10-m zonal wind. 

 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

01 1.000 0.920 0.895 0.838 0.875 0.827 0.910 0.855 0.845 0.799 0.815 0.784 0.784 0.745 0.835 0.795 0.881 0.842 0.860 0.800 0.840 0.797 0.854 0.799 

02 0.920 1.000 0.860 0.884 0.835 0.876 0.868 0.889 0.821 0.825 0.799 0.813 0.775 0.775 0.810 0.819 0.851 0.859 0.838 0.835 0.816 0.829 0.824 0.824 

03 0.895 0.860 1.000 0.900 0.946 0.879 0.904 0.848 0.871 0.810 0.868 0.828 0.829 0.792 0.856 0.804 0.877 0.825 0.891 0.803 0.870 0.806 0.836 0.756 

04 0.838 0.884 0.900 1.000 0.868 0.916 0.847 0.864 0.832 0.835 0.836 0.849 0.804 0.801 0.814 0.839 0.827 0.838 0.839 0.861 0.821 0.842 0.795 0.803 

05 0.875 0.835 0.946 0.868 1.000 0.906 0.888 0.825 0.850 0.797 0.828 0.799 0.828 0.792 0.832 0.787 0.857 0.811 0.855 0.791 0.890 0.827 0.808 0.745 

06 0.827 0.876 0.879 0.916 0.906 1.000 0.835 0.864 0.817 0.843 0.813 0.835 0.821 0.832 0.806 0.821 0.821 0.831 0.822 0.825 0.840 0.871 0.781 0.785 

07 0.910 0.868 0.904 0.847 0.888 0.835 1.000 0.911 0.863 0.806 0.830 0.784 0.795 0.751 0.876 0.822 0.866 0.825 0.858 0.788 0.827 0.776 0.889 0.828 

08 0.855 0.889 0.848 0.864 0.825 0.864 0.911 1.000 0.827 0.841 0.810 0.815 0.778 0.783 0.844 0.861 0.829 0.831 0.823 0.806 0.789 0.806 0.850 0.856 

09 0.845 0.821 0.871 0.832 0.850 0.817 0.863 0.827 1.000 0.875 0.940 0.861 0.911 0.824 0.959 0.871 0.885 0.839 0.854 0.799 0.848 0.805 0.858 0.792 

10 0.799 0.825 0.810 0.835 0.797 0.843 0.806 0.841 0.875 1.000 0.855 0.913 0.841 0.896 0.857 0.929 0.833 0.853 0.811 0.814 0.797 0.820 0.801 0.811 

11 0.815 0.799 0.868 0.836 0.828 0.813 0.830 0.810 0.940 0.855 1.000 0.889 0.916 0.827 0.919 0.850 0.858 0.824 0.875 0.819 0.844 0.809 0.841 0.781 

12 0.784 0.813 0.828 0.849 0.799 0.835 0.784 0.815 0.861 0.913 0.889 1.000 0.846 0.879 0.842 0.879 0.821 0.837 0.836 0.846 0.815 0.832 0.792 0.798 

13 0.784 0.775 0.829 0.804 0.828 0.821 0.795 0.778 0.911 0.841 0.916 0.846 1.000 0.868 0.899 0.834 0.830 0.802 0.814 0.769 0.841 0.810 0.785 0.742 

14 0.745 0.775 0.792 0.801 0.792 0.832 0.751 0.783 0.824 0.896 0.827 0.879 0.868 1.000 0.812 0.866 0.797 0.801 0.777 0.777 0.804 0.817 0.739 0.745 

15 0.835 0.810 0.856 0.814 0.832 0.806 0.876 0.844 0.959 0.857 0.919 0.842 0.899 0.812 1.000 0.876 0.872 0.822 0.848 0.783 0.842 0.790 0.877 0.807 

16 0.795 0.819 0.804 0.839 0.787 0.821 0.822 0.861 0.871 0.929 0.850 0.879 0.834 0.866 0.876 1.000 0.825 0.834 0.801 0.807 0.792 0.803 0.815 0.838 

17 0.881 0.851 0.877 0.827 0.857 0.821 0.866 0.829 0.885 0.833 0.858 0.821 0.830 0.797 0.872 0.825 1.000 0.926 0.942 0.867 0.926 0.862 0.911 0.839 

18 0.842 0.859 0.825 0.838 0.811 0.831 0.825 0.831 0.839 0.853 0.824 0.837 0.802 0.801 0.822 0.834 0.926 1.000 0.883 0.909 0.858 0.909 0.857 0.882 

19 0.860 0.838 0.891 0.839 0.855 0.822 0.858 0.823 0.854 0.811 0.875 0.836 0.814 0.777 0.848 0.801 0.942 0.883 1.000 0.887 0.923 0.852 0.910 0.834 

20 0.800 0.835 0.803 0.861 0.791 0.825 0.788 0.806 0.799 0.814 0.819 0.846 0.769 0.777 0.783 0.807 0.867 0.909 0.887 1.000 0.834 0.899 0.843 0.879 

21 0.840 0.816 0.870 0.821 0.890 0.840 0.827 0.789 0.848 0.797 0.844 0.815 0.841 0.804 0.842 0.792 0.926 0.858 0.923 0.834 1.000 0.891 0.861 0.787 

22 0.797 0.829 0.806 0.842 0.827 0.871 0.776 0.806 0.805 0.820 0.809 0.832 0.810 0.817 0.790 0.803 0.862 0.909 0.852 0.899 0.891 1.000 0.808 0.848 

23 0.854 0.824 0.836 0.795 0.808 0.781 0.889 0.850 0.858 0.801 0.841 0.792 0.785 0.739 0.877 0.815 0.911 0.857 0.910 0.843 0.861 0.808 1.000 0.892 

24 0.799 0.824 0.756 0.803 0.745 0.785 0.828 0.856 0.792 0.811 0.781 0.798 0.742 0.745 0.807 0.838 0.839 0.882 0.834 0.879 0.787 0.848 0.892 1.000 
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FIG. 1.  Geographical domains used by the WRF-ARW ensemble. 
 
 
 
 
 
 
 

 
FIG. 2.  Plot of the cumulative variance accounted for by the principal components for the 12-h 2-m AGL 
temperature forecasts. The solid red line indicates the 95% level used by subsets A and D. 
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FIG. 3.  Donut chart showing the BMA weights for each ensemble member for 2-m temperature forecasts 
on the 12-km domain.  The innermost ring is for 12-h forecasts, the second ring for 24-h forecasts, the 
third ring for 36-h forecasts, and the outermost ring is for 48-h forecasts. 
 
 
 

 
FIG. 4.  Same as Fig. 3, but for 10-m zonal wind forecasts. 
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FIG. 5.  Root-mean-square error over the 12-km domain during the verification period, for each forecast 
variable and lead time, for the equal-weighted ensemble (unfilled) and BMA-weighted ensemble (filled).   
 
 
 
 

 
FIG. 6.  Histograms for the 10-m zonal wind forecasts on the 12-km domain during the verification period.  
(a) is a verification rank histogram for the equal-weighted ensemble, and (b) is a probability integral 
transform (PIT) histogram for the BMA-weighted ensemble.  In both (a) and (b), because the ensemble 
size is 24, each of the 25 bins would be at 0.04 if the histogram were flat. 
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FIG. 7.  Cumulative ranked probability scores for each forecast lead time (12 h, 24 h, 36 h, and 48 h) and 
parameter (2-m temperature, 10-m zonal and 10-m meridional winds).  Unfilled bars correspond to 
equally-weighted ensembles, and filled bars correspond to BMA-weighted ensembles.  The black bars 
are for the full ensemble, purple for subset A, blue for subset B, green for subset C, and red for subset D. 

 
 
 


