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1. INTRODUCTION 
 
   Atlantic tropical cyclones (TCs), and their 
most intense manifestations, the hurricanes, 
have a significant impact on the costal regions 
of Central and North America (Pielke and 
Landsea, 1998). The seasonal forecast of TCs 
activity aims to determine the frequency and 
intensity of storms (Gray et al., 1992, 1993, 
1994; Landsea et al., 1992, 1993, 1994; 
Klotzbach and Gray, 2003, 2004; Klotzbach, 
2007). Understanding the processes that 
influence TCs at seasonal time scale is 
accomplished by statistical analysis of 
observations as well as by numerical 
simulations (Knutson et al., 2010; Kossin et 
al., 2010; Vitart, 2006).  
   It has been shown that TCs activity at 
seasonal scale is influenced by: a) the sea 
surface temperature (SST) in the North 
Atlantic, especially in the Main Development 
Region (MDR) and in the Caribbean region; b) 
the vertical shear of the horizontal zonal wind; 
c) the moisture distribution, the vertical 
stability as well as the atmospheric pressure 
anomalies. Hurricanes need to develop 
vertically and strong vertical wind shear can 
tear them apart. When the wind shear is 
increased, there is a greater chance the storm 
will dissipate because it is pushed or spread 
over a larger area. Ocean temperatures 
greater than about 26.5 deg C through a depth 
of at least 50 meters are generally favorable 
for the formation of tropical cyclones. Higher 
SST lead to higher probability of TC genesis, 
and to stronger storms. Among the factors that 
impact TCs, the SST have been investigated 
extensively, in part due to the availability of 
long term measurements in the North Atlantic 
region (Reynolds and Smith, 1994; Smith and 
Reynolds, 2004; Smith et al., 2008).  
_____________________________________ 
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   It has been argued that the SST Atlantic 
Multidecadal Oscillation (AMO) (Marshall et 
al., 2001; Knight et al., 2005) modulates the 
TCs activity at decadal time scale (Goldenberg 
et al., 2001). At shorter time scale, El Nino - 
Southern Oscillation (ENSO) events create 
large oceanic and atmospheric perturbations 
that enables TCs prediction at seasonal time 
scale (Gray, 1984; Landsea, 2000; Chu, 2004; 
Smith et al., 2007; Klotzbach, 2007). The 
recent progress in ENSO forecasting provides 
the means for successful short term climate 
predictions (Zebiak and Cane, 1987; Latif et 
al., 1998; Chen et al., 2004) with implications 
for the Atlantic TCs predictability. 
   It has been shown that the Oceanic Nino 
Index (ONI), based on the sea surface 
temperature anomaly (SSTA) in the Nino3.4 
region of the tropical Pacific can be used to 
characterize ENSO. Thus, we adopt ONI as 
the primary ENSO time series to be linked to 
TCs activity. We show that TCs frequencies 
are statistically linked to ONI before and 
during the Atlantic hurricane season in years 
with strong and moderate ENSO events. 
 
 
2. DATA AND METHOD 
 
   We use the NOAA ONI for the time interval 
1950 - 2009 based on the most recent version 
of the Extended Reconstruction Sea Surface 
Temperature (ERSST.v3) analysis (Smith et 
al., 2008). These SST are based on the 
International Comprehensive Ocean – 
Atmosphere Data Set (ICOADS) release 2.4. 
The anomalies are computed with respect to a 
1971-2000 month climatology (Xue et al. 
2003). ONI is used for identifying El Nino 
(warm) and La Nina (cool) events in the 
tropical Pacific. ONI is the running 3-month 
mean SST anomaly for the Nino3.4 region 
(i.e., 5o N – 5o S, 120o –170o W). ENSO 
events are defined as 5 consecutive months at 
or above the +0.5 deg C anomaly for warm (El 
Nino) events and at or below the -0.5 deg C 
anomaly for cold (La Nina) events.           
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  For the purpose of this study, an ENSO 
event is considered “intense” (i.e. moderate or 
strong) when ONI has an absolute value larger 
than 1 deg C, for at least 5 consecutive 
months. In our analysis we use only intense 
ENSO events because tests have shown that 
during weak events as well as during non-
event years, the TCs activity is largely driven 
by other physical factors and the influence of 
the central equatorial Pacific is difficult to 
detect. Thus, using a subset of years with 
intense El Nino and La Nina events, it is more 
likely to detect a statistical relationship 
between TCs frequencies and ONI.  
   Besides the ONI time series, we use the 
global SST data to determine the spatial 
distribution of SSTA for years with intense 
ENSO events. Moreover, to test the role of the 
vertical wind shear, we use the NCEP/NCAR 
reanalysis and calculate the wind shear 
anomalies for the hurricane season during the 
years of interest. The NOAA HURDAT data 
are used for the TCs statistics (Landsea et al., 
2004). The methodology used in this study 
can be summarized as: a) perform regression 
analysis between ONI and TCs frequencies; b) 
once the regression is established and found 
statistically significant, determine whether 
ENSO is predictable several months in 
advance the hurricane season; c) attempt to 
provide a mechanistic explanation of the TCs 
frequencies – ONI regression based on 
composite maps of SSTA and vertical wind 
shear, using the ERSST and the NCEP/NCAR 
data. 
 
 
3. RESULTS AND DISCUSSION 
 
   During the time interval 1950 - 2009, there 
were 22 intense ENSO events. As we will 
show below, the correlation between ONI and 
TCs frequencies is significant, and thus, about 
one third of the time there is a good chance to 
forecast Atlantic TCs activity based on intense 
ENSO events.  
 
3.1 Regression analysis 
 
  Our first step is to perform regression 
analysis (von Storch and Zwiers, 1999; Wilkis, 
1995) between TCs frequencies and ONI. The 
TCs frequencies have the following notations: 
NS – frequency of named storms; H – 
frequency of hurricanes; MH – frequency of 
major hurricanes; and USH – frequency of US 

landfalling hurricanes. We note first that a 
similar regression analysis is possible 
between the accumulated cyclone energy 
(ACE) and ONI. Figure 1 shows that ACE 
correlates very well with the TCs frequencies, 
especially with the frequencies of hurricanes 
and major hurricanes. In view of this strong 
correlation, we limit our following presentation 
to correlations between ONI and TCs 
frequencies.  
   Figure 2 illustrates the linear regression 
between the frequency of named storms (NS) 
during the entire hurricane season and ONI for 
the specified three months. Thus, MAM 
indicates ONI for the months March – April – 
May, and so on. We note the significant 
negative correlation between NS and ONI. 
Analysis of the statistical output shows that 
ONI for JAS, ASO, and SON has the highest 
correlation with NS for the data set used here. 
The lowest correlation is between NS and ONI 
for MAM, which is also the earliest time 
interval considered, long before the hurricane 
season. Results indicate that if we can predict 
an intense ENSO before May or June for 
example, we can obtain a good estimate of the 
TCs frequencies in the following hurricane 
season. 
   Figure 3 shows the linear regression 
between the frequency of hurricanes (H) 
during the entire hurricane season and ONI for 
the specified three months. Similarly, Figure 4 
shows the linear regression between the 
frequency of major hurricanes (MH) during the 
entire hurricane season and ONI for the 
specified three months. Both for H and MH, 
the correlation with ONI is significant during 
intense ENSO events. Somehow weaker 
correlation, yet statistically significant, is found 
for the correlation between USH and ONI 
(Figure 5). From a practical perspective, 
predicting USH as well as the frequencies of 
landfalling TCs in other island and coastal 
areas of the Gulf of Mexico is paramount.  
 
3.2 ENSO statistical forecast 
 
   The utility of a regression model to predict 
TCs frequencies based on ONI values is 
largely dependent on the ability to predict ONI 
in advance of the hurricane season. There is 
significant progress in ENSO forecast, both 
using statistical methods and dynamic models 
(Chen et al., 2004). Here we follow a statistical 
approach, based largely on time series 
analysis and forecasting, as described in 
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Hamilton (1994), to predict the monthly 
Nino3.4 SSTA index for several months. The 
performance of such model is largely 
dependent on the remarkable SSTA 
persistence in specific oceanic regions 
(Andronache and Phillips, 2008; Andronache, 
2009, 2010a, 2010b). The illustrations shown 
below are for SSTA predictions for one, two, 
three and six months. Figure 6 shows: a) 
Nino3.4 SSTA forecast one month in advance; 
b) the corresponding forecast error; c) Nino3.4 
SSTA forecast two months in advance; and   
d) the corresponding forecast error. The 
forecast error is defined as the difference 
between the observed and the predicted 
SSTA value. In the graph showing the 
comparisons between the observed and 
predicted Nino3.4 SSTA values, the first 100 
months are used to determine the parameters 
of the model. We note that the prediction error 
is less than 0.5 deg C, which is acceptable. 
Somehow larger errors are found in instances 
for the two months prediction. Similarly, Figure 
7 shows: a) Nino3.4 SSTA forecast three 
months in advance; b) the corresponding 
forecast error; c) Nino3.4 SSTA forecast six 
months in advance; and d) the corresponding 
forecast error. In these cases, we note that for 
three months, predictions are still dominated 
by small errors, while for six months, the error 
of prediction becomes too large. Results 
suggest that a statistical approach to ENSO 
prediction can provide, several months in 
advance, the ONI values that can be used as 
predictor in our regression model. 
 
3.3 Composite SSTA maps 
 
   Figure 8 shows the composite map of the 
global SSTA during the hurricane season 
(months June – November) for years with 
intense El Nino events. It illustrates that in the 
MDR and Caribbean region, SSTA is not 
favorable for more TCs, while in North Eastern 
Pacific, some positive SSTA are apparent.  In 
Figure 9, we show the composite map of the 
global SSTA during the hurricane season 
(months June – November) for years with 
intense La Nina events. In this case, SSTA in 
North Atlantic is more favorable for TCs 
formation, while in North Eastern Pacific, 
SSTA is slightly negative. Our analysis of 
SSTA during intense ENSO events tends to 
support earlier findings that frequencies of 
TCs in Western North Atlantic are negatively 
correlated with North Eastern Pacific TCs 

(Wang and Lee, 2009). Nevertheless, SSTA 
appear to have small values overall, and it 
seems likely that the wind shear effects on 
TCs frequencies are more significant, as 
illustrated in the next subsection.  
 
3.4 Composite wind shear maps 
 
   Figure 10 shows the composite map of the 
global vertical wind shear anomaly during the 
hurricane season (months June – November) 
for years with intense El Nino events. We note 
the positive wind shear anomaly extended 
over Caribbean region, confirming the work by 
Gray (1984) and other following studies that 
linked El Nino to the suppression of TCs 
formation due to enhanced wind shear. In 
contrast, Figure 11 shows the composite map 
of the global vertical wind shear anomaly 
during the hurricane season (months June – 
November) for years with intense La Nina 
events. It confirms that strong negative 
anomalies in MDR area are favorable for TCs 
development and intensification. Detailed 
analysis for each month of the hurricanes 
season (not shown) supports the overall 
relationship between vertical wind shear 
anomaly and TCs frequencies, while some 
variability from month to month is apparent. 
 
 
4. CONCLUSIONS 
 
  In summary, we found that there is significant 
correlation between intense ENSO events and 
TCs frequencies in the North Atlantic, 
confirming results from previous analyses 
related to using ENSO as predictor of TCs 
activity at seasonal time scale. The vertical 
wind shear anomalies are likely to play a role 
in the North Atlantic TCs development and 
intensification during intense ENSO events.  
Also, our analysis suggests that seasonal 
hurricane outlook can benefit from accurate 
ENSO forecast, which has made remarkable 
progress over the last two decades. Finally, 
changes in AMO, ENSO, and other major 
factors due to climate warming, can alter the 
relationship between ONI and TCs 
frequencies based on past data (Webster et 
al., 2005; Emanuel, 2005; Mann and Emanuel, 
2006). Continuous advances and refinements 
in data collection, analysis and model 
development remain paramount to improve 
TCs seasonal forecasts in a changing climate.  
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Figure 1.  Distribution of the correlation coefficient between the accumulated cyclone energy 
(ACE) and frequencies of named storms (NS), hurricanes (H) and major hurricanes (MH) using 
the bootstrapping method. 
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Figure 2. Linear regression between the frequency of named storms (NS) during the entire 
hurricane season and the Oceanic Nino Index (ONI) for the specified three months. 
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Figure 3. Linear regression between the frequency of hurricanes (H) during the entire hurricane 
season and ONI for the specified three months. 
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Figure 4.  Linear regression between the frequency of major hurricanes (MH) during the entire 
hurricane season and ONI for the specified three months.  
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Figure 5. Linear regression between the frequency of US landfalling hurricanes (USH) during the 
entire hurricane season and ONI for the specified three months. 
 

 
Figure 6.  a) Nino3.4 SSTA forecast one month in advance; b) the corresponding forecast error; 
c) Nino3.4 SSTA forecast two months in advance; d) the corresponding forecast error. The 
forecast error is defined as the difference between the observed and the predicted value. The first 
100 months are used for model parameter determination. 
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Figure 7. a) Nino3.4 SSTA forecast three month in advance; b) the corresponding forecast error; 
c) Nino3.4 SSTA forecast six months in advance; d) the corresponding forecast error. The 
forecast error is defined as the difference between the observed and the predicted value. The first 
100 months are used for model parameter determination 
 
 

 
 
 
Figure 8. Composite map of the global SSTA during the hurricane season (months June – 
November) for years with intense El Nino events.  
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Figure 9. Composite map of the global SSTA during the hurricane season (months June – 
November) for years with intense La Nina events.  
 
 
 
 

 
Figure 10.  Composite map of the global vertical wind shear anomaly during the hurricane season 
(months June – November) for years with intense El Nino events.  
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Figure 11. Composite map of the global vertical wind shear anomaly during the hurricane season 
(months June – November) for years with intense La Nina events.  
 
 
 
 
 


