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1. INTRODUCTION1

 
    With the rapid development of exploring 
techniques, the number and variety of 
observations have increased significantly. Since 
the current operational forecast centers are lack 
of resource to assimilate all the available 
observations and in fact much of the data are 
redundant and even if some of them have 
negative impact on the forecast, the information 
of the impact that different observations have on 
the analyses and forecasts is crucial to better 
use the observations in a data assimilation 
system. Traditionally, a common method for 
assessing the observation impact is to carry out 
so-called Observation System Experiments 
(OSEs), in which a subset of observations used 
in the baseline experiment are removed from a 
data assimilation system. OSEs is a common 
way to estimate one or limited subsets of 
observations but prohibitive to investigate the 
impacts of large subsets of observations since 
each subset requires an independent 
experiment. Langland and Baker (2004) 
proposed an efficient way of estimating the 
impact of any subset of observation on short-
range forecasts. However this procedure 
requires the adjoint of forecast model and 
adjoint of data assimilation, both of which are 
complicated to develop and not always available 
for a numerical weather prediction system. 
Inspired by this adjoint-based estimation, Liu 
and Kalnay (2008) (LK08) proposed an 
ensemble-based estimation method within the 
local ensemble transform Kalman filter by using 
nonlinear forecast model to evolve the forecast 
perturbations, avoiding the need of any adjoint 
system. The ensemble-based procedure is able 
to estimate impact of any set or subset of 
observations on measures of forecast by first 
calculating the impact for each individual 
observation and then aggregating the results in 
terms of instrument type, observed variable, 
channel, location or other category, all computed 
simultaneously based on a single assessment 
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experiment, achieving the same goal of the 
adjoint-based method. Liu and Kalnay (2008) 
tested their method with the Lorenz 40-variable 
model. In this study, the LK08 method is applied 
to an AGCM global model to exam its 
performance with more realistic model and 
observations. The observation impact of 
simulated rawinsonde, cloud drift wind, and 
satellite retrieved temperature and humidity 
profiles are estimated.  

 
 

2. LETKF DATA ASSIMILATION SCHEME  
 
   The Local Ensemble Transform Kalman 
Filter (LETKF) (Hunt et al. 2007) is an ensemble 
square-root filter in which the observations are 
assimilated to update only the ensemble mean 
(1), while the ensemble perturbations are 
updated by transforming the forecast 
perturbations through a transform matrix (2) 
introduced by Bishop et al (2001). The basic 
formulas used in the LETKF are: 
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Here  are the analysis and 
forecast ensemble perturbations, respectively 
(matrices whose columns are the difference 
between the ensemble members and the 

ensemble mean). The transform matrix 
~ aP  

is the square-root of matrix ( ) aPK ~1−
a

where 

P~ , the analysis error covariance in ensemble 
space, is given by 
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It has dimension K by K where K is the 
ensemble size, which is generally much smaller 
than both the dimension of the model and the 
number of observations. Thus, the LETKF 
performs the analysis in the space spanned by 
the forecast ensemble members, which greatly 
reduces the computational cost. Furthermore, 



since the analysis is computed independently at 
each grid point, the LETKF computation can be 
performed in parallel. 
 
 
3. ENSEMBLE-BASED METHOD (LK08) FOR 
ASSESSING THE IMPACT OF OBSERVATION 
 
   Like the adjoined-based method, the 
ensemble-based method assesses the 
observation impacts at the analysis time 00 on 
the forecast time t by comparing the forecast at 
time t starting from time 00 ( f

tx 0| with forecast 

error 0|tε  ) with the forecast stating from time -6 

( f
tx 6|− with forecast error 6|−tε ) (Figure 1). Since 

the difference of these two forecast trajectories 
are from the different initial conditions due to 
updating the background fx 6|0 −  to the analysis  

ax00 , the difference between the errors 

)( 6|0| −− tt εε at time t is solely due to the 
assimilation of observations at time 00. 
   

 
Fig. 1:  A schematic of the impact of 
observations assimilated at time 00 on forecast 
at time t:  observations assimilated at time 00 
creating initial conditions for a new trajectory, 
which has forecast error 0|tε  at time t and the 
old trajectory starting from time -06, which has 
forecast error 6|−tε . 
 

Define a cost function to measure the 
forecast error difference:  
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Here, a matrix C whose diagonal elements 
are the coefficients in the dry-air energy 
equation is introduced. Eq. (4) suggests that the 
negative value of J implies the overall positive 
impact of observation at time 00 on forecast at 
time t, and vice versa.  

   Liu and Kalnay (2008) re-wrote the 
expression of J by using the formulas of the 
LETKF to be:  
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Note, here 1)(~~ −= RHXPK Tba  and 

)(0
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used in the LETKF data assimilation procedure 
(equation (1)). 

Following eq. (5), the impact of each 
individual observation is calculated by: 
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Thus, the impact of a subset of 

observations can be obtained by adding each 
individual impact together within the selected 
subset.   

 
 
4. EXPERIMENTAL SETUP   

 
The SPEEDY model (Molteni 2003), an 

atmospheric general circulation model with 
simplified physical parameterization schemes is 
used in this study. It has a spectral primitive-
equation dynamics and triangular truncation T30 
at 7 sigma levels. Three types of observations 
including rawinsondes, cloud drift wind, and 
satellite retrieved temperature and humidity 
profiles are simulated by adding zero mean 
normally distributed noise to the SPEEDY model 
nature run from Jan 1, 1987 to Feb 15, 1987. 
The rawinsonde observations simulate the real 
sounding locations with errors of 1 m/s for u, 
v，1 K for T, 10-4 kg/kg for q，and 1 hPa 
for Ps. The cloud drift wind data are available 
above 300hPa in the region of (50°S～50°N) 
with error of 3 m/s. The satellite retrieved 
temperature and humidity profiles are simulated 
on the model grid at every 2 grid points with 
errors 2 K for T, 2*10-4 kg/kg for q. 

First, a cycled data assimilation experiment 
is performed in the period of Jan 1, 1987 to Feb 
15, 1987 by assimilating the three types of data 
every 6-hour with the LETKF scheme. 30 
ensemble members and a local patch of 4*4 grid 
box are used in the LETKF. Then we estimate 
the data impact on 6-hour forecast at each 
analysis step from Feb 1, 1987 to Feb 15, 1987 
by using the assessment equation (6). To verify 
the results, the real error reduction is computed 
with eq. (4).  

 
 



5. RESULTS 
 

The map view of the global distribution of 
the estimated impact of each individual 
observation for different instrument types are 
given in figure 2. The overall impact is positive 
(more negative values) with more individual 
positive impact from rawinsonde and relative 
small but uniform impact from satellite retrievals. 
Cloud drift wind has largest impact in tropics. 

We aggregate the results in terms of two 
Hemispheres (Fig. 3). Though the total impact in 
SH is much smaller than that in NH, the 
individual observation impact in the two 
hemispheres are similar.  

We then group the results in terms of 
instrument type. Fig. 4 shows that the largest 
impact in the Northern Hemisphere is produced 
by rawinsondes, whereas it is produced by 
satellite retrieved profiles in the Southern 
Hemisphere. 

 
 
Fig. 4: Summed global observation impact for 
SH and NH with the y-axis below zero; and the 
total observation numbers for SH and NH with 
the y-axis above zero, partitioned by instrument 
type.  
 

By comparing the impacts of two satellite 
derived data (Fig. 5), we see that the retrieved 
profiles are important in the poles while the 
cloud drift data is much valuable in tropics.  

 
 

Fig 5: Longitude and vertical summed obs 
impact for satellite retrieval（○）and cloud-drift 
wind（■）（unit：J/kg）  

  

To validate our assessment, we sum all the 
individual impact up and then compare this 
estimated total impact with the real forecast 
error reduction (i.e. the actual observation 
impact) calculated with eq. (4).  The result (not 
shown) suggests that the total estimated global 
observation impact accounts for 70～80% of the 
value of actual impact and captures the 
variations of actual impact very well. 

 
6. CONCLUTION  
 

We have applied the LK08 method to the 
SPEEDY model to assess the observation 
impact of simulated rawinsondes, cloud drift 
wind, and satellite retrieved temperature and 
humidity profiles. Our results show that the LK08 
procedure can successfully evaluate the impact 
of each observation on the forecast and the 
impact values can then be grouped and 
summed by various subsets of observations that 
may be of interest. The total observation impact 
in the Northern Hemisphere is bigger than that in 
the Southern Hemisphere. The largest impact in 
the Northern Hemisphere is produced by 
rawinsondes, whereas it is produced by satellite 
retrieved profiles in the Southern Hemisphere. 
Cloud drift wind has largest impact in tropics. 
The validation analysis shows that the 
estimation of global observation impact accounts 
for the majority of actual impact and captures 
the variations of actual impact very well.  rawinsonde 

Satellite 
retrieval 

Cloud drift 
wind 
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. 2: Global distribution of the estimated impact of each individual observation for different instrument 

ig 3: Time series of summed observation impact for SH (solid line with marks) and NH (solid line)  

Fig
types, averaged for the period from 00Z, Feb01, 1987 to 18Z, Feb15, 1987. (Unit: J/kg) 
 
 

 
 
F  with
the y-axis on the left; and time series of mean observation impact for SH (dash line with marks) and NH 
(dash line) with the y-axis on the right  
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