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ABSTRACT

The Multiple Hypothesis Tracking (MHT) algorithm is introduced as
a centroid-based storm cell tracker for radar imagery. MHT improves
upon current algorithms such as SCIT (Storm-Cell Identification and
Tracking) and TITAN (Thunderstorm Identification, Tracking, Anal-
ysis, and Nowcasting) by addressing problems with detection drop-
outs, false mergers, and spurious detections. This algorithm has been
widely used in the field of video processing, and has now been adapted
for storm cell tracking.

The design of the MHT algorithm is explained and the features
that it provides are discussed in the context of addressing these in-
herent difficulties. MHT is demonstrated in a variety of scenarios
using simulated and real data derived from radar imagery. Applica-
tions for both real-time and post-processing studies are discussed.

1. Introduction

a. Motivation

Storm cell tracking is an important component for storm
evolution studies, real-time nowcasting and severe weather
warning systems. The search continues for more reli-
able tracking algorithms that would supersede the widely
used SCIT (Storm-Cell Identification and Tracking) and
TITAN (Thunderstorm Identification, Tracking, Analysis,
and Nowcasting). While the current crop of algorithms fare
well in many situations, there remains issues with tracking
efficacy with regards to detection drop-outs, false mergers
and spurious detections.

Multiple Hypothesis Tracking (MHT) (Cox and Hingo-
rani 1996) improves upon current technologies by address-
ing these problems in its design. Widely used in the field
of video processing and military target tracking, it has now
been adapted for use in storm cell tracking. A key benefit
of the MHT algorithm is that it is highly configurable and
robust to input data. An understanding of the parame-
ter’s impact upon the behavior of MHT is critical for its
use. Therefore, the goal of this project is to explore these
parameters.
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b. Definitions

An ‘object’ is the term for a real-world body that is
desired to be identified and tracked. A ‘feature’ is the
computer-vision of an ‘object,’ usually obtained from some
sort of identification process. The key difference between
an object and a feature is that a feature could be the result
of noise in the data, while an object physically exists. Z(t)
is the set of features reported for time t. A ‘track’ is the set
of features, at most one from the set Z(t) for each t. Ideally,
a track would contain only the features for a particular
object, or would contain only a single reported feature that
occurred from noisy data. Lastly, a ‘hypothesis’ is a set of
tracks which covers the entire set of features for all t. For
an arbitrary set of Z(t), it is possible there exists multiple
hypotheses that satisfy the data constraints.

c. Multiple Hypothesis Tracking

Any algorithm to be used for storm cell tracking must
satisfy certain requirements. First, the algorithm must not
require a priori knowledge of the number of tracks. Sec-
ond, tracks must be able to enter and exit the domain.
Third, tracks may be initiated and terminated at any time,
at any location. Lastly, tracks may evolve independently
of each other (i.e., no rigid-body assumptions). These re-
quirements ought to be self-evident when considering the
observed behaviors of unorganized, scattered storm cells
and organized storms moving with a passing frontal bound-
ary.

Fig. 1. Flowchart of the MHT tracking algorithm.
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A multitude of tracking algorithms were reviewed, par-
ticularly the algorithms listed in the 2006 paper by Yilmaz,
Javed, and Shah. The algorithm that satisfied the afore-
mentioned requirements was “Multiple Hypothesis Track-
ing” (MHT) (Cox and Hingorani 1996). This tracking ap-
proach considers the time-associations globally, and is ca-
pable of ‘correcting’ its tracking decisions in subsequent
iterations as more data is available. These are desirable
properties for adaptive sensing and historical reanalyzes.
While not used for this study, MHT can also utilize ad-
ditional information about each feature to reduce tracking
ambiguities (i.e., ‘texture’ data such as reflectivity).

MHT treats the tracking problem as a global maximum
finding problem. At each iteration, the MHT algorithm
updates a list of hypothetical tracks, which are sorted by
their calculated likelihoods. The likelihoods are calculated
as the conditional probability of a particular hypothesis,
which explicitly models the probability of both spurious
and non-spurious features. To limit the combinatorial ex-
plosion that occurs, only the k-best hypotheses are gen-
erated using Murty’s method (Murty 1968). In addition,
MHT employs techniques to ‘prune away’ remaining un-
likely hypotheses. This algorithm is diagrammed in Fig-
ure 1.

2. Method

a. Source Code

The original source code for MHT was obtained from
Ingemar Cox’s website. The MHT source code, written in
C++, required minor changes for storm cell tracking pur-
poses. The MHT module and the tracker analysis system,
ZigZag, are available on-line1 and are maintained by the
author.

b. Simulation

For the purpose of rigorously analyzing the MHT al-
gorithm, the track simulator called ‘ZigZag’ (Root et al.
2011a) was used to generate many realistic tracks. The
‘storm’ tracks generated by ZigZag are essentially random
walks. These tracks have random starting location, speed,
and direction. The duration of the storm tracks is also
randomly determined. ZigZag can also control many other
aspects of the simulations, such as applying noise models
and adding clutter objects.

For this parameter optimization study, the scenario con-
sisted of a squall line with twenty-five tracks moving at
speeds between 1.0 and 2.5 km per minute (approximately
35 to 90 miles per hour). These tracks were initialized
from an ellipse-shaped region with a minor axis length
of 25 km and a major axis length of 125 km that moves
slowly at about 0.5 kilometers per minute (approximately

1Available at: https://github.com/WeatherGod

20 miles per hour). These main squall line tracks have a
10% probability of termination at any time. In addition to
the twenty-five main tracks, two additional tracks were cre-
ated to merge into the existing tracks, as well as two tracks
to split off of main tracks. A couple of simulated features
were dropped due to false apparent mergers, as well as 1%
of randomly chosen features in order to simulate identifi-
cation dropouts. The positions of these simulated tracks
were then jittered randomly with a position variance of half
a kilometer.

Next, the scenario simulates twenty spuriously created
features that are uniformly distributed in time and uni-
formly distributed within the same squall line region. Last,
the simulates sixteen persistent clutter objects located at
the heart of the squall line. These clutter objects were
normally distributed over a radius of about ten kilometers.

For this scenario, ten simulations were generated. The
simulation count was kept low for the purpose of expediting
the process of parameter optimization. More simulations
are highly recommended for adequate statistical analysis.

c. Parameters

The MHT algorithm has no fewer than fifteen parame-
ters that control the various components within the algo-
rithm. This many parameters are far too many to study
each in detail for this project. However, several of these
parameters can be excluded or simply kept at their default
values as set by the original authors of the algorithm. For
example, some parameters are related to the handling of
the texture data, which have been excluded for this study.
Other parameters that have been kept at their defaults are
related to the control of the Kalman filter and the hypoth-
esis pruning used for efficiency purposes. Four parameters
remained for study:

1 Probability of Detection
Estimated probability for correct object identification

2 Mean Rate of New Tracks
Estimated number of newly established tracks per
frame

3 Mean Rate of False Alarms
Estimated rate of spurious feature identification

4 λx

Probability of track termination

In addition to these four parameters, it was found that
the default value for the initial velocity variance estimate
parameter was two orders of magnitude too large for this
problem. In general, the initial value of this value should
not significantly impact the tracking results because MHT
should converge on the proper velocity variance estimate.
However, it was found that by setting this parameter to
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Fig. 2. Contingency table depicting the classifications that
each line segment can be assigned. The number of segments
in each category is used for calculating the skill score.

one (as oppose to 200), the tracking results contained sig-
nificantly fewer spurious track assignments.

d. Measuring Results

By breaking up the tracks from a tracking algorithm
and the known tracks into lists of associations and non-
associations, a contingency table for the decisions of the
tracker can be made. For each true association created by
ZigZag, a ‘hit’ (H) is made when the tracker made an iden-
tical association. A ‘miss’ (M) is when the tracker failed to
make that association. For each truly unassociated feature
created by ZigZag, a ‘correct null’ (N) is counted when the
tracker also determined that the feature was not associated
with any other feature. Conversely, it is considered to be a
‘false alarm’ (F ) if the tracker associated that feature with
a track2. A contingency table is shown in Figure 2.

This project used ‘Percent Correct’ (PC) for measuring
the performance of the trackers.

PC =
(H +N)

(H +M + F +N)
. (1)

Values range from 0 (worst) to 1 (best).

3. Results & Discussions

The average, bootstrapped skill scores and the 95% bias-
corrected, accelerated (BCa) confidence intervals (Efron
and Tibshirani 1993) are depicted in Figures 3, 4, 5, and
6.

First, the probability of detection (POD) parameter for
MHT was examined. Values of ranging from 0.15 through
0.99 were tested. Throughout this range, MHT consis-
tently scored an average of 95% correct with its tracking
decisions. Setting the POD value too low resulted in more
misses, while setting it too large increased the number of
false associations. For this scenario, a POD value between
0.8 and 0.9 seems optimal, but fine-tuning this parameter
may not be needed.

Next, the mean rate of new tracks (NTPS) parameter
was examined. Note that this name might be misleading
and further examination of the algorithm’s source code is
needed to determine the exact nature of this parameter.

2A false alarm in this context is different from the false alarm
mentioned previously in the Definitions section.
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Fig. 3. Tracking scores for MHT with changing values of
the probability of detection. The 95% confidence interval
for the average PC value is depicted by the error bars.
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Fig. 4. Tracking scores for MHT with respect to the mean
rate of new tracks parameter. The 95% confidence interval
for the average PC value is depicted by the error bars.

Experimenting with values on a log10 scale from −5 to
−1 revealed a similar shape to the PC values for POD,
and is depicted in Figure 4. For most values tested, MHT
achieved a 97% accuracy or better. Only at the extremes of
this range did the accuracy drop slightly to about 92%. If
NTPS was set too large, MHT would produce many short
tracks and longer tracks would have many dropouts as it
tries to satisfy the rate of new track creation. However,
if NTPS was set to small, MHT would miss many pos-
sible tracks. The clutter objects seemed to be the most
impacted by the extremes of this parameter. The optimal
value appeared to be about 0.001 to stay away from either
extremes.

The mean false alarm per scan (MFAPS) was the next
parameter to be examined. Like the NTPS, this name
might also be slightly misleading and a determination of
the exact nature of this parameter is needed. Testing val-
ues on a log10 scale from −8 to −1 revealed an intriguing
curve, part of which is depicted in Figure 5. For smaller
values, MHT performed very well, achieving approximately
0.98% accuracy, whereas the largest values of MFAPS (not
shown) resulted in near-zero accuracy. Further examina-
tion of the results revealed that this sudden drop in skill
scores occurs whenever MFAPS is somewhat larger than
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Fig. 5. MHT tracking scores with respect to changes in the
mean rate of false alarms parameter. The 95% confidence
interval for the average PC value is depicted by the error
bars.

NTPS. From this, it is concluded that a MFAPS value of
0.00002 should be sufficiently smaller than the NTPS and
allow for adequate performance.

Finally, the λx parameter was examined. There is not
much documentation for this parameter and exactly what
it controls in MHT. The current understanding is that this
parameter is the probability of track termination at any
given scan, but multiplied by 100 (unlike the other proba-
bility parameters). Further examination of the source code
is needed to determine its exact nature. Using a range of
values from 5.0 to 95.0 for λx revealed a curve that in-
creased slowly from around 0.95% to just above 0.965%.
Figure 6 depicts this relationship. While further exami-
nation of larger values of λx is warranted, a value of 30.0
appears to be sufficient for this type of scenario simulation.

Utilizing the knowledge gained from these parameter op-
timization analyzes, the MHT algorithm can now be used
to track features in real-world radar data. Due to the lack
of an objective truth for reference, it is not possible to
quantify the performance of the tracker in the same man-
ner as before in this study. However, a visual inspection of
the results should be sufficient to determine if results are
visually coherent.
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Fig. 6. MHT tracking scores with changing values of the
λx parameter. The 95% confidence interval for the average
PC value is depicted by the error bars.
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Fig. 7. Tracking results from applying MHT to features
identified in a 17-minute radar reflectivity time series.
Radar data from the NWRT PAR site in Norman, Ok-
lahoma on June 5th, 2008 between 2343 and 0000 GMT.
Black lines are the track associations, while the red dots
are the un-associated features.
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Fig. 8. Tracking results from applying MHT to features
identified in a 22-minute radar reflectivity time series.
Radar data from the NWRT PAR site in Norman, Ok-
lahoma on February 10th, 2009 between 2142 and 2204
GMT. Black lines are the track associations, while the red
dots are the un-associated features.

Figures 7 and 8 depict the tracking results from the MHT
algorithm applied to feature data derived from radar re-
flectivity data. The radar reflectivity data are from the
NWRT PAR site in Norman, Oklahoma. The feature data
were created from the Strong Point Analysis (SPA) (Root
et al. 2011b) image clustering algorithm. The tracks de-
picted in these figures do not appear to be spurious and
seem to be coherent.

4. Conclusions

This project provided an initial in-depth look at the
MHT algorithm as a potential storm tracking algorithm.
By using ZigZag to simulate storm tracks, we were able
to perform controlled testing and analysis of MHT’s per-
formance with respect to its parameters. It appears that
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MHT regularly produced results that were more than 90%
accurate regardless of the values of the parameters, and
were more the 95% accurate for most parameter values. All
four parameters appear to be very stable over wide ranges
of values. The only major parameter space constraint that
was discovered was that MFAPS should be kept smaller
than NTPS.

Further analysis of these parameters under a wider va-
riety of scenarios should be done to determine how much
(or how little) tuning is needed for MHT to produce results
that are superior to the current generation of tracking algo-
rithms. If a given set of parameters can lead to sufficiently
accurate results from MHT regardless of the tracking sce-
nario provided, then its value as a storm tracking algorithm
increases. Indeed, initial examination of the applicability
of MHT to real-world radar data appear promising.
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