
AUGMENTING SADT WITH UML 

A HYBRID APPROACH FOR THE DESIGN OF OPERATIONAL SCIENCE ALGORITHMS 

John L. Baldwin *, Alexander Werbos, and T. Scott Zaccheo 
Atmospheric and Environmental Research (AER), Inc.

1. INTRODUCTION 

Science algorithms perform calculations for modeling 

physical phenomena and estimating physical properties.  

They take input and control data to generate output 

data.  Implemented in software, science algorithms are 

functional in nature and generally not user interactive.  

As such they can be designed as modular 

computational units which may be run independently, as 

part of batch processing, or as components within a 

user or service interactive environment. Two 

contemporary approaches to address the analysis and 

design of such systems are Structured 

Analysis/Structured Design and Object Oriented 

Analysis and Design.  Structured Analysis and Design 

Technique (SADT) is a specific methodology which 

emerged out of the variety of different structured 

analysis and structured design approaches.  SADT was 

designed to simplify and provide a consistent model to 

describe hierarchical systems.  Unified Modeling 

Language (UML) is a specific object oriented design 

methodology, serving a similar role to object oriented 

systems which SADT provides for hierarchical systems.  

Collaborative computing and ever larger and more 

complex operational scientific software systems create 

greater demands on software and systems engineers to 

reduce risk and provide greater features while working 

to keep costs as low as possible.  Augmenting UML with 

SADT provides more in-depth algorithm analysis and 

functional decomposition, while still retaining the strong 

object model that facilitates large-scale system design. 

Large scale software engineering projects are complex, 

expensive, and inherently risky. Clear communication is 

critical to meet requirements, stay in budget, and 

minimize risk. Effective design is critical to clear 

communication. SADT provides a common language for 

scientists and software engineers to communicate ideas 

on how the algorithms function. First and foremost, 

SADT provides a common language to demonstrate 

algorithm correctness.  

 

* Corresponding author address: John L Baldwin, AER, 

Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126; 

email: jbaldwin@aer.com 

 

This paper proposes a hybrid structured analysis and 

object oriented design approach using SADT with UML 

toward developing science algorithms and documenting 

legacy algorithms for incorporation into operational 

systems and environments.  We present an introduction 

to GOES-R and its systems and software engineering 

for context. This is followed by an introduction to SADT 

along with its strengths and drawbacks, a brief 

introduction to UML, a working example of SADT, and 

then demonstrate how UML augments SADT for a 

robust algorithm development approach. 

2. GOES-R OVERVIEW 

The National Oceanic and Atmospheric Administration’s 

Geostationary Operational Environmental Satellite 

system is a premier national asset with regard to 

weather and climate analysis. GOES satellites stay in a 

fixed orbit above the Earth, providing a constant stream 

of data. These data are applied in areas such as 

monitoring for a variety of severe weather conditions, 

hazardous conditions such as volcanic ash for aviation, 

fire and smoke analysis, and many areas of climatology 

research. 

GOES-R is the next generation of the GOES Mission. 

GOES-R is comprised of two segments, space and 

ground. This paper focuses on algorithm design for 

product generation within the ground segment. The 

instruments in the space segment will significantly 

increase the resolutions and therefore the data 

processing needs of the space and ground segments 

over the current generation instruments. Consider one 

instrument, the Advanced Baseline Imager (ABI). The 

ABI will increase the spectral resolution of GOES by 

three times over the exiting baseline imager. The spatial 

resolution will increase fourfold, and the temporal 

resolution will increase by half an order of magnitude. 

GOES-R will execute six L1 radiometric calibration 

algorithms, at least two image navigation and 

registration algorithms, and with Option 2, L2+ 

algorithms will generate over forty data products. This 

complexity demands strong software engineering to 

support both the infrastructure and the science 

algorithms to run operationally. L1b and L2+ algorithms 

J10.4 

mailto:jbaldwin@aer.com


will plug into a modular, scalable framework using data 

objects via the Data Model Interface (DMI). The DMI is 

designed using object oriented techniques to provide an 

abstract interface between internetworking of the 

infrastructure and the algorithms (see Figure 1). 

 

Figure 1: GOES-R Algorithm Execution 

3. SCOPE OF THE STRUCTURED ANALYSIS 

APPROACH 

Two software design approaches were identified during 

the proposal phase for use in the GOES-R Ground 

Segment (GS) development. Unified Modeling 

Language (UML) is the current de facto software design 

standard for object oriented development and was 

chosen for designing the overall Ground Segment 

software. Object oriented programming aids in 

developing complex software systems by promoting 

modularity and code reuse. This approach helps to 

decouple system complexity from subsystem 

complexity, therefore aiding in cost and risk reduction 

over non object oriented systems such as legacy 

monolithic architectures. 

A structured analysis and structured design approach 

was specified for algorithm development. Two key 

rationales drive this approach. First, object oriented 

design is not a natural tool for analyzing and initially 

describing functional systems, such as satellite data 

processing algorithms. These algorithms are more 

easily analyzed and described through functional 

decomposition rather than through object creation. 

Second, physical scientists are not normally trained in 

object oriented design and are not expected to be 

familiar with tools such as UML. They are more likely to 

pick up such diagramming techniques as flowcharts and 

data flow diagrams. 

Many analysis and design conventions had been 

developed for structured programming prior to the 

growth in popularity of object oriented design and 

programming. At the beginning of GOES-R 

development we needed to solidify our algorithm 

development approach and incorporate it into our formal 

procedures. We reviewed different structured 

approaches and chose SADT primarily for its terse 

symbol set, hierarchical diagramming approach, and 

readability.  In order to comply with the overall GOES-R 

GS program development needs and achieve effective 

algorithm development within the program, we adopted 

key concepts of SADT instead of adopting the 

methodology wholesale. 

Algorithm design fits within the larger context of an 

object oriented system (See Figure 2). As GOES-R is a 

large complex system, effective incorporation of a 

structured analysis algorithm design approach into the 

object oriented infrastructure design facilitates overall 

system integration. 

 

Figure 2: Algorithm design fits within the overall 

context of the infrastructure design 

When the structured analysis and design approach was 

initially developed for GOES-R algorithm design the only 

UML artifacts specified were use cases (See Figure 3). 

Use cases were included because they link the software 

requirements to the design. No other object oriented 

design artifacts were going to be used as there is a 

clear separation between algorithm development and 

infrastructure development.  The initial diagrams to 

augment SADT were flowcharts and entity relationship 

diagrams to provide control flow descriptions and 

structural models respectively. IBM Rational Software 

Architect is a UML design tool. It is used for the overall 

GOES-R Ground Segment software design. Therefore 

we had an opportunity to experiment with it for algorithm 

design; initially with class diagrams to replace entity 

relationship diagrams, then with activity diagrams to 

replace flowcharts. We found that this improved the 

quality of our design and our development processes for 

three reasons. First, it provides more consistency with 

the infrastructure design which fosters better 

communication. Second, there is a rich pool of 

information on the Internet and in reference books for 

UML design. Third, it allows greater integration of 

algorithm design with the GOES-R Ground Segment 

infrastructure software development processes. 



 

 Figure 3: UML use cases are drivers to tie design 

elements to requirements 

4. STRUCTURED ANALYSIS AND DESIGN 

TECHNIQUE (SADT) 

SADT is both a language and a process for systems 

analysis (Marca, 1991 p. 94).  It is a functional modeling 

method for describing systems as a hierarchy of 

functions, and was chosen for algorithm development 

because it provides an unambiguous and relatively 

concise framework for systems modeling. For the 

GOES-R algorithm development effort, the primary goal 

of the SADT model is to develop correct descriptions of 

the science algorithms. An SADT model can focus 

either on system things or on system activities; 

historically the former are called “data models” and the 

latter “activity models”.  An SADT activity model is 

similar to a data flow diagram but communicates 

significant additional information, in particular system 

constraints.  The modeling process employs the classic 

top-down, hierarchic, functional decomposition 

approach to understanding and describing a system and 

to successively decomposing it into smaller and smaller 

subsystems, each of which can be described by an 

SADT diagram.  The methodology is rigorous, with 

precise diagram syntax rules that enable an SADT 

model to concisely and accurately communicate 

significant information about the functionality and 

external interfaces of a system. 

SADT artifacts differ from traditional analysis modeling 

artifacts. Traditional structured analysis relies on 

different diagram types, such as data flow diagrams and 

entity relationship diagrams, to describe a system.  

Fundamentally, SADT uses a single diagramming 

technique with a single element (shape).  This 

fundamental diagram element is shown in Figure 4. 

The function box represents a unit of activity: a process 

or action such as an equation or collection of decision 

logic. The function box has four arrows. Three arrows 

enter the box and one exits the box. Entering on the left 

of the box are the input data. These are data consumed 

by the function. Exiting from the right of the box are the 

output data. These are data produced by the function. 

 

Figure 4: The SADT function box 

The basic elements involved in the development of an 

SADT diagram are as follows: 

 The Box – The function, action, or process 
(the activity) 

 Input – Data consumed by the function 

 Output – Data produced by the function 

 Control – Rules or constraints on the activity, 

which influence the execution of the activity 

 Mechanism – The context of the activity, i.e. 

the means of realizing the activity defined by 
the box.  This is a convenient hook to apply 
classes or UML use case actors to SADT 
model behavior 

The key general concepts that govern the construction 

of any SADT diagram are: 

 The function represented by the box consumes 
input and produces output based upon 
conditions of the controls and application of the 
mechanism to the function 

 SADT arrows represent a set of one or more 
things (such as numerical data sets) 

 SADT arrows are decomposable, i.e. they can 
split and join to indicate separation or 
aggregation of the represented data sets 

 SADT, unlike other structured analysis 
methods, distinguishes input data from control 
data.  Inputs can be considered as things a 
function consumes; controls define rules or 
constraints on a function 

All diagram elements (boxes, arrows, and interfaces) 

are uniquely labeled, enabling unambiguous association 

of an activity box and its interfaces with its decomposed 

sub-diagram. This diagramming approach readily lends 

itself toward satellite data processing algorithms, which 

follow an input → processing → output behavioral 

model (See Figure 5). In the context of GOES-R science 

algorithms, the input and output arrows correspond to 

time series and location based data where inputs are for 

a value or range of time T and location L. The control 



data are generally considered constant over a span of 

inputs. 

 

Figure 5: Function as a basis for the SADT function 

box 

SADT has a specific diagram hierarchy organized into 

three groups: 

 System context diagram 

 System summary diagram 

 N tier decomposition 

 At the top is the system context diagram. This diagram 

identifies all the external interfaces to the algorithm (the 

system). The system context diagram provides a top-

level/abbreviated view of the SADT model. Using SADT 

nomenclature, this box is labeled A-0 and is at the top of 

the hierarchy (See Figure 6).  A single box is shown in 

this diagram to represent the entire algorithm.  This 

diagram thus treats the complete algorithm as a “black 

box” and emphasizes the external interfaces of the 

algorithm, including the input required and the output 

produced. In SADT notation, a hyphen is used between 

the letter and the number for the system context 

diagram. 

The next SADT diagram is the system summary 

diagram, labeled A0.  This diagram provides the first-

level decomposition of the constituent activities 

internally performed by the system and the internal flow 

of data that occurs between these activities in order to 

accomplish the system’s purpose. The context (A-0) and 

summary (A0) diagrams operate as a pair where: (1) the 

context diagram provides the top level “black box” view 

of the algorithm, and (2) the summary diagram provides 

the first level “white box” decomposition of the three to 

six major components within the algorithm. Each box 

within a diagram is assigned and labeled with a number 

that is unique within the diagram, starting with “1” and 

continuing sequentially. Sub-diagrams are developed 

from each box in the A0 diagram. Each sub-diagram of 

A0 is labeled A1, A2, A3, and so on (See Figure 6). 

Further decomposition of each function box into a lower 

level diagram in the hierarchy appends this box’s 

number to the diagram label. For example, the sub-

diagram of box 1 of the A0 diagram will be A1. The sub-

diagram of box 3 of the A1 diagram will be labeled A13 

(See Figure 6).   

Excluding the system context diagram (A-0), SADT 

prescribes that each other activity diagram, including the 

system summary (A0) diagram, contain between three 

and six boxes describing the constituent sub-activities.  

In GOES-R algorithm development, we have found 

through practice that there are cases where deviating 

from the six box limit results in cleaner grouping of 

design elements. Therefore, we use the three to six box 

range as a general guide rather than adhere to it strictly.  

A0

A1 A2 A3

A11 A12 A13

A-0

 

Figure 6: Representation of an SADT diagram 

hierarchy 

5. STRENGTHS AND DRAWBACKS OF SADT 

5.1. Strengths of SADT 

In GOES-R, SADT has provided a consistent modeling 

tool to describe how the GOES-R algorithms work as 

systems. Spatially and temporally dependant data flows 

are differentiated from static and semi-static data. 

Algorithms in general, and science algorithms in 

particular, follow an input → processing → output 

behavioral model. This is readily represented with 

SADT. This approach has benefits of consistency and 

adaptability and has proven effective in GOES-R 

algorithm development for communicating the 

correctness of algorithms. 

 SADT uses a single building block; the SADT 

function box. This promotes understanding by 

avoiding the use of a variety of diagramming 

techniques to describe system hierarchies 

 SADT provides an unambiguous and relatively 

concise framework for systems modeling 

 SADT is easily complemented with other 

techniques 

 Physical scientists and software engineers can 

use SADT as a common language to ensure 

design correctness 

5.2. Drawbacks of SADT 



SADT is not a design magic bullet. It addresses many, 

but not all, analysis and design issues. It also has some 

inherent flaws. Two key inherent flaws are: 

 Mechanism – This is the least well defined part 

of the SADT function box and has caused 

confusion as to its purpose and usefulness 

 Decisions – SADT lacks the definition of 

control flow that is present in flowcharts and 

UML activity diagrams 

Another issue with SADT is its lack of readily available 

design tools. GOES-R uses Visio 2007, which is time 

consuming for creating and modifying diagrams which 

contain many data flow lines (arrows). In contrast, there 

are many commercial and free tools available for UML. 

SADT describes how a hierarchical system works, 

which lends well toward procedural programming, but 

does not define how the system should work as object 

oriented code.  These drawbacks, along with the 

benefits of closer integration with infrastructure design, 

were driving forces for augmenting SADT with UML. 

6. UNIFIED MODELING LANGUAGE (UML) 

UML is a standardized modeling language for 

developing object oriented software systems. It uses a 

collection of diagrams grouped into two major 

categories: behavioral diagrams and structural 

diagrams. Behavioral diagrams describe how a system 

being modeled must operate. Structural diagrams 

describe the entities that must be in a system being 

modeled. GOES-R relies heavily on a subset of UML 

diagrams. Behavioral diagrams used are: 

 Use Case diagrams - describe actor-based 

functionality of a system through use case 

analysis  

 Activity diagrams - describe conditional flow 

and state behavior 

 Sequence diagrams - describe temporal flow 

and object lifecycles  

For structural diagrams, GOES-R uses class diagrams 

to describe classes, attributes, and relationships 

between classes.  

7. AUGMENTING SADT WITH UML 

UML solves key issues of SADT by providing: 

 A means to describe control flow via UML 

activity diagrams 

 Sequence diagrams to identify timing and 

software component lifecycles 

 Class diagrams to provide structures in an 

object oriented manner 

The following diagrams are from the design of the 

Advanced Baseline Imager (ABI) Cloud Mask algorithm. 

They provide an illustration of the system 

decomposition. Figure 7 shows the system context 

diagram which provides a “black box” view of the 

external interfaces to the algorithm. Figure 8 shows the 

system summary diagram which provides a first level 

decomposition of the major functional components 

within the Cloud Mask algorithm. Figures 9 and 10 

provide the second and third tier decompositions of box 

2 (binary cloud detection tests) of the system summary 

diagram. 

The UML diagrams in this section show capabilities 

which SADT diagramming lacks. 

 

Figure 7: SADT context diagram for the ABI Cloud 

Mask algorithm. Note the label “A-0 in the lower left 

corner” 

 



Figure 8: SADT system summary diagram for the 

ABI Cloud Mask algorithm. Note the label “A0 in the 

lower left corner” 

 

Figure 9: SADT A2 diagram for the ABI Cloud Mask 

algorithm which shows the decomposition of box 2 

of the system summary diagram (A0), “Perform 

Binary Cloud Detection Tests” 

 

Figure 10: SADT A21 diagram for the ABI Cloud 

Mask algorithm which shows the decomposition of 

box 1 of the A2 diagram, “Perform ACM Infrared 

Cloud Tests” 

A UML activity diagram describes the control flow logic 

of a component or set of components. Like flowcharts, 

rectangles identify activities and diamonds represent 

decisions. Each component’s responsibilities are 

distinguished by a vertical swim lane.  Graphically, swim 

lanes are vertical or horizontal rectangular regions 

spanning the height or width of the diagram 

respectively. They identify who is supposed to perform 

which activity and make which decision. If there is only 

one component, then that component’s swim lane takes 

up the entire diagram. Figure 11 shows the control flow 

logic of the SADT diagram A21 box 5, “Perform NFMFT 

Cloud Test.” This diagram shows that the algorithm 

component on the left swim lane is executing a 

“runCheck” method of the NFMFT Cloud Test design 

element and implemented by the NFMFT_Check Class. 

 

Figure 11: UML Activity Diagram 

 

Figure 12: UML sequence diagram describes a 

sequence of executions needed to fulfill some tests 

to create the cloud mask product data of the ABI 

Cloud Mask algorithm 

A UML Sequence diagram describes temporal flow and 

object lifecycles (see Figure 12). Each process or object 



is identified by a box on the top of the diagram. Each 

vertical bar below the object box identifies the object’s 

lifeline, which its scope of execution. Arrows are 

messages and function calls between objects. This 

diagram helps to discover and address timing issues. 

For GOES-R algorithm development, they help develop 

class composition and integration with the service 

framework. 

 

 

Figure 13: ABI Cloud Mask Algorithm Major Classes 

Class diagrams are developed in concert with 

expanding the SADT model and updated as design 

efforts progress. The following diagram (Figure 13) 

shows the major classes in the ABI Cloud Mask 

algorithm. A class is a static structure which defines a 

collection of methods and attributes (data members). A 

class defines the smallest granularity of functionality in 

an object oriented system and defines the interface for 

this functionality. In this way, classes can be thought of 

as templates or types from which objects are 

instantiated to perform computation to fit the logic 

specified by the class. A class diagram identifies the 

static structure of a whole or part of an object oriented 

system. This diagram identifies classes and their 

relationships, such as inheritance and association. 

8. CONCLUSION 

SADT has key significant strengths which make it an 

effective and appropriate tool for graphically describing 

and designing data processing systems in general and 

algorithms with rich hierarchies of equations in 

particular. First, SADT diagramming has a low learning 

curve both for those creating and reading the diagrams. 

The diagrams are built upon a single building block, the 

function box. Once one understands the function box, 

then the diagram organization should be clear. Second, 

SADT differentiates between dynamic and static data. If 

correct diagramming techniques are followed, then the 

reader can immediately recognize which data are 

dynamic, such as time series and location range and 

which data are static, such as configuration parameters 

and coefficients. Each diagram below the context 

diagram should have as a general rule between three to 

six function boxes, which promotes a concise and 

uncluttered reading of a set of functionality. 

SADT has drawbacks too. It does not describe how 

software should be implemented in an object oriented 

way. The hierarchical decomposition lends readily to 

implementation with a set of functions, but does not 

clearly show how those functions can be organized in 

effective manner of cohesion into classes. This requires 

knowledge of object oriented design to map function 

boxes into classes and class methods. SADT does not 

describe state nor provide for control flow. It also does 

not describe component lifecycles or timing behavior of 

components. 

Augmenting SADT with UML diagrams fills the gaps in 

SADT as a software design tool. UML activity diagrams 

describe the control flow within SADT function boxes. 

UML sequence diagrams describe temporal flow and 

object lifecycles. In GOES-R, SADT has proven 

effective as a shared language between scientists, 

systems engineers, and software engineers to 

demonstrate algorithm correctness. UML is an industry 

standard object oriented design approach and provides 

a consistent language for developing object oriented 

systems. When combined, these methodologies have 

demonstrated a consistent and effective design 

approach toward developing GOES-R algorithms. 

9. REFERENCES 

Dickover Melvin E., McGowan Clement L. and Ross 

Douglas T., 1977:  Software Design using SADT 

[Conference] // ACM Annual Conference/Annual 

Meeting.  

Marca David A. and McGowan Clement L., 2006:  

IDEF0 and SADT, A Modeller's Guide [Book]. - 

Auburndale, MA : OpenProcess, Inc. 

 


