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1. INTRODUCTION

Range oversampling techniques are a 
practical way to decrease weather radar update 
times without increasing estimation errors. One of 
these techniques, adaptive pseudowhitening, was 
implemented on the National Weather Radar 
Testbed (NWRT) during the 2010 spring season. 
Adaptive pseudowhitening utilizes different 
pseudowhitening matrices based on the estimated 
signal-to-noise ratio (SNR) and spectrum width at 
each range gate. This approach leads to better 
performance than a fixed transformation over 
widely varying conditions. On the NWRT, scan 
update times were reduced by roughly a factor of 
two without a noticeable increase in errors. At 
higher SNR values, there was even some 
improvement in data quality.

This novel real-time implementation is 
computationally efficient and simplifies the 
utilization of different transformations for all of the 
basic spectral moments. With the forthcoming dual 
polarization upgrade to the Next Generation Radar 
(NEXRAD) system, this novel implementation 
could also be extended to dual polarization 
variables. An overview of this real-time 
implementation will be presented along with some 
practical suggestions for SNR censoring.

2. BACKGROUND

In general, range oversampling describes the 
process of sampling in range at a rate greater than 
the inherent range resolution determined by the 
length of the transmit pulse. When oversampling 
by a factor of L, the L samples in range will be 
correlated because the inherent range resolution 
is not changed. All of the range oversampling 
techniques covered in this paper are based on 
applying a linear transformation to the correlated 
time series samples in order to reduce the range-
time correlation. The autocorrelations computed 

from the transformed samples are then averaged 
and processed to produce moments at the original 
non-oversampled resolution.

At each range gate, the linear transformation, 
W, is applied to V which is an L x M matrix of time 
series data. L is the oversampling factor and M is 
the number of pulses in the radial. The result is the 
transformed matrix of time series data, X.

X = WV (1)

Since V is made up of both a signal and a noise 
component, V = VS + VN and X = WVS + WVN. The
linear transformation of the noise component can 
increase the noise resulting in noise 
enhancement. More details can be found in Torres 
and Zrnić (2003).

3. ADAPTIVE PSEUDOWHITENING

The easiest way to visualize the effects of 
noise enhancement is to use a time series 
simulation (Zrnić 1975) showing the change in the 
standard deviation of a spectral moment versus 
the signal-to-noise ratio (SNR). In this paper, the 
simulated time series are utilized to estimate 
reflectivity performance using the parameters for a 
surveillance cut on the NWRT. The parameters 
were chosen to match the weather data plotted in 
Section 5: number of pulses, M = 12, pulse 
repetition time or PRT, TS = 3 ms, and spectrum 
width, σv= 4 m s-1. The operating frequency of the 
NWRT is 3.2 GHz.

Fig. 1 compares traditional matched-filter 
based (MFB) processing against three range 
oversampling techniques. Whitening 
transformation based (WTB) processing (the blue 
curve) shows significantly better performance at 
high SNR, but performs worse than MFB 
processing at low SNR. One way to mitigate the 
poor performance for whitening at low SNR values 
is to use fixed pseudowhitening transformation 
based (PTB) processing that trades off some 
performance at high SNR to gain performance at 
low SNR. This approach is illustrated by the 
magenta curve. Although a fixed pseudowhitening 



transformation improves performance at low SNR, 
it still does not perform as well as MFB or WTB 
processing in some regions. The optimal approach 
would be to use the best possible transformation 
at each SNR so that a whitening-type
transformation is used at high SNR, a matched 
filter-type transformation is used at low SNR, and 
an appropriate pseudowhitening transformation is 
used in between. Adaptive pseudowhitening is a 
practical implementation of this optimal approach.

Figure 1. Standard deviation of power estimates for matched-
filter based (MFB), whitening transform based (WTB), fixed 

pseudowhitening transform based (PTB), and adaptive 
pseudowhitening transform based (APTB) processing.

Adaptive pseudowhitening uses estimates of 
the SNR (and of the spectrum width) to pick an 
optimal transformation at each range gate. The 
transformation is chosen based on the variance 
formulas in Torres et al. (2004). These formulas 
give expressions for the variance of all three 
moments in terms of the range covariance matrix, 
the SNR, and the normalized spectrum width. If 
uniform reflectivity is assumed, the range 
covariance matrix is known a priori. Then, MFB 
estimates of the SNR and normalized spectrum 
width can be used to produce moment-specific 
transformation matrices. The results from this 
adaptive psudowhitening transform based (APTB) 
approach are shown with the green curve in Fig. 1.
APTB processing performs well at all SNRs even 
though it uses estimates to pick the appropriate 
transformation. Adaptive pseudowhitening was 
implemented on the NWRT in the spring of 2010, 
and some of the details of the implementation are 
described in the next section.

4. REAL-TIME IMPLEMENTATION

The main difference between adaptive 
pseudowhitening and the single-transformation 
processing proposed in previous works is that a 
meteorological-variable-specific transformation is 
needed at every range resolution cell which leads 
to a more complicated real-time implementation. A 
brute-force approach to adaptive pseudowhitening 
is presented in this section, but issues with 
computational complexity and clutter filtering make 
it less suitable for a real-time implementation. A 
novel, more efficient approach is then described to 
address the shortcomings of the brute-force 
method. The computational complexity of both 
approaches are compared, and some additional 
implementation issues are addressed.

The brute force approach follows the steps 
briefly described in the description of adaptive 
pseudowhitening. Assume that at each range gate 
we start with an LxM matrix, V, of time series (IQ) 
data. The final output will be the moments, in this 
case, reflectivity, velocity, and spectrum width. 

Figure 2. Graphical representation of the brute-force approach 
to adaptive pseudowhitening.
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The first step is to compute estimates of the 
SNR and normalized spectrum width. This is done 
by producing digital matched-filtered data, y, from 
V. The SNR and normalized spectrum width are 
calculated from the lag-0 and lag-1 
autocovariances, and three moment-specific 
pseudowhitening matrices are formed: W(S), W(v), 
and W(σv). The three whitening matrices are then 
applied to V to produce three moment-specific, 
pseudowhitened time series matrices: X(S), X(v), 
and X(σv). Next, L autovariances are computed for 
each autocovariance needed to calcuate the 
moments. These correspond to the L rows of the 
time-series matrices. The L autocovariances are 
averaged to produce the final moment-specific 
autocovariances, and the moments are then 
calculated from these autocovariances.

For this implementation, three different time-
series matrices are used to compute the moment-
specific autocovariances although this does not 
seem especially efficient. The bigger issue is with 
clutter filtering, and there are basically two options. 
The first is to use a clutter filter that results in a 
filtered version of V that can then be processed as 
before. This would come before the digital 
matched filter. Although this is the most efficient 
place to apply the clutter filter since it will result in 
clutter filtered versions of y, X(S), X(v), and X(σv), it 
also depends on a specific type of filter that 
returns filtered time-series data. This restricts the 
type of clutter filter that can be used and 
necessitates a more complicated conversion back 
to the time domain if a spectral domain filter is 
utilized. The second option is to apply the clutter 
filter to y, X(S), X(v), and X(σv) separately. This 
removes the restrictions on the clutter filter but 
greatly increases the computational complexity (by 
a factor of 3L+1 compared to traditional 
processing). The first option has restrictions on the 
type of clutter filtering used but only increases the 
computational complexity by a factor of L
compared to traditional processing. These issues
led to a search for a more efficient implementation.

The basic idea behind the efficient adaptive 
pseudowhitening implementation is to split the 
pseudowhitening matrix into two parts. In this way, 
the part that is common to all of the 
transformations, W(S), W(v), and W(σv), can be 
applied first before clutter filtering and then the 
moment-specific part can be applied later. This 
can be seen by looking at the definition of the 
transformation matrix described in Torres et al. 
(2004):

*T W Σ P (1)

where  is the transformation gain, Σ is a diagonal 
real-valued matrix, and P is a unitary matrix from 
the eigenvalue decomposition of the normalized 
range-correlation matrix,

VC . The mathematical 

derivations for this and the rest of the efficient 
implementation can be found in Curtis and Torres 
(2010). The *TP matrix is common to all three of 
the W (S), W(v), and W(σv) matrices, but the 
 Σ part is moment-specific. The efficient 

implementation applies both of these parts 
separately.

Fig. 3 describes the steps of the efficient 
implementation of adaptive pseudowhitening. 

Figure 3. Graphical representation of the efficient approach to 
adaptive pseudowhitening.
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The efficient implementation starts by forming the 
partially-transformed times series matrix

*TX P V . (2)

The clutter filter can be applied to the partially-
transformed matrix with the only restriction on the 
filter being that L lag-0 and lag-1 autocovariances 
can be computed from the rows of X . The first row 
of X corresponds to the matched-filtered data so 
the SNR and normalized spectrum width can be 
computed from the properly-scaled, first value of 
the autocovariances. This avoids the extra step of 
computing the matched-filtered vector, y. From the 
estimates, moment-specific weight vectors, d(S), 
d(v), and d(σv), can be computed that correspond 
to the second part of the transformation. The 
moment-specific autocovariances can be 
calculated from a weighted average of the 
autocovariances computed from X . Finally, the 
moments are calculated from the moment-specific 
autocovariances as in the brute-force approach.

The efficient approach addresses both of the 
issues mentioned earlier. The first is that only one 
matrix of time-series data needs to be computed 
from V instead of three. The second is that there 
are no longer restrictions on the type of clutter 
filter that can be used as long as the lag-0 and lag-
1 autocovariances are computed. This reduces the 
computational complexity of the efficient 
implementation by a factor of two compared to the 
brute-force approach (without taking clutter 
filtering into account). In the end, the efficient 
implementation increases the computational 
complexity by a factor of L over traditional 
processing with or without clutter filtering.

The last practical issue that needs to be 
addressed is data censoring (or thresholding). 
Data censoring is a data quality issue whereby 
only data from significant weather returns are 
utilized (e.g., displayed and sent to algorithms) 
and data from noise-like returns are not. A 
common way to censor weather radar data is to 
use an SNR threshold. Data corresponding to 
signals above a particular SNR threshold are 
treated as significant, and data below the 
threshold are treated as non-significant or noise. 
For adaptive pseudowhitening, this is complicated 
by the fact that the noise powers are different for 
each range resolution cell and the corresponding 
SNR threshold should be adjusted because of the 
lower variance of APTB estimates. For our 
implementation, we chose a simple approach and 
used the SNR computed from the MFB data and a 
fixed threshold. This censors the data in the same 

way as the matched-filter approach, but the 
estimates that are designated as significant will 
often have better quality than the ones computed 
with the MFB data. By taking advantage of the 
improved estimates from the APTB processing, it 
may be possible to preserve more data that are 
considered significant, but this will require
additional research.

5. NWRT WEATHER DATA

Figure 4. Comparison of digital matched filter (top) and 
adaptive pseudowhitening (bottom) using NWRT data from 

10:54 UTC, April 2, 2010.



Fig. 4 shows part of two 90° sectors collected 
using the NWRT and processed using a digital 
matched filter (top) and adaptive pseudowhitening 
(bottom). The images should look similar, but the 
key difference is that the total collection time at 
each beam position was 99.2 ms for the digital 
matched filter and only 56.8 ms when using 
adaptive pseudowhitening (this includes the time 
for collecting data for all of the moments). Overall, 
a scanning strategy was developed for adaptive 
pseudowhitening that takes about 54% of the time 
of a traditional scan. Thus, similar data quality can 
be produced in roughly half the time on the NWRT 
when using adaptive pseudowhitening and the 
corresponding scanning strategy.

6. CONCLUSIONS

Efficient adaptive pseudowhitening is less 
computationally complex than a brute-force 
approach and simplifies the application of a clutter 
filter. The real-time implementation was used in 
the spring of 2010 to produce data on the NWRT 
with similar data quality in roughly half the time. 
This approach will also extend nicely to dual 
polarization variables and could be used to 
increase data quality on the NEXRAD network 
after the dual polarization upgrade is completed.
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