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1.  Introduction 
  
The direct assimilation of satellite radiance observations is an important component of 
global numerical weather prediction (NWP) data assimilation (DA) systems at many 
operational meteorological centers (e.g., Caplan et al. 1997; Zapotocny et al. 2007; 
Gauthier et al. 2007; Rawlins et al. 2007; Karbou et al. 2010).  As the information from 
radiances leads to specification of initial conditions (ICs) that are closer to the true 
atmospheric state, radiance DA has been shown to substantially improve weather 
forecasts, especially over maritime areas and the southern hemisphere, where there are 
fewer conventional observations (Caplan et al. 1997; Derber and Wu 1998; Zapotocny et 
al. 2005, 2007).   
 
However, analysis and forecast sensitivity to radiance DA within regional NWP models 
has been less-rigorously examined, and the few studies assessing this sensitivity have 
yielded somewhat ambiguous results.  For instance, Xu et al. (2009a) assimilated 
radiances over southwest Asia with the Gridpoint Statistical Interpolation (GSI; Kleist et 
al. 2009) analysis system and found that forecasts were improved in some sub-regions but 
degraded in others.  Additionally, Xu et al. (2009b) noted that radiances from some 
satellite sensors generated a “limited improvement” regarding track forecasts of hurricane 
Katrina while radiances from other sensors had little impact.  They also found that 
radiance DA did not alter intensity forecasts of Katrina.  Similarly, an earlier DA study 
over North America revealed that certain satellite sensors impacted weather forecasts, 
while others had little effect (Zapotocny et al. 2005).  
  
Clearly, there remain questions regarding the benefit of assimilating radiances within 
regional DA/NWP systems.  Yet, as the use of regional NWP has proliferated in the past 
decade thanks to community models such as the Weather Research and Forecast (WRF; 
Skamarock et al. 2008) model, it is important to understand how radiance DA can 
improve limited-area forecasts, especially for domains spanning data-sparse areas (such 
as deserts or oceans).  Moreover, while ensemble DA techniques such as the ensemble 
Kalman filter (EnKF; Evensen 2003) have been shown to be appropriate for regional 
models (e.g., Meng and Zhang 2008), to our knowledge, there have been no attempts to 
directly assimilate satellite radiances over a limited-area domain using ensemble DA 
methods. 
 
Thus, in recognition of the uncertainty associated with assimilating radiances in a 
regional model, this work investigates radiance DA in both deterministic and ensemble  
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Fig. 1.  (a) Computational domain used for all experiments and (b) track of typhoon 
Morakot overlaid on d02.  In (b), the estimated center of circulation of Morakot is plotted 
every 6-hrs.  Red (blue) dots indicate Morakot was at typhoon (tropical storm or 
depression) strength, and numbers refer to the month and day at 0000 UTC in 2009 (e.g., 
0809 means 0000 UTC 09 August 2009). 
 
frameworks while studying typhoon Morakot, which formed in the western Pacific Ocean 
in August 2009 and made landfalls in both Taiwan and China (Fig. 1b).  All weather 
forecasts were generated by the Advanced Research Weather Research and Forecast 
model (WRF-ARW; Skamarock et al. 2008), while the DA techniques differed.  
Deterministic experiments used the WRF data assimilation (WRFDA; Skamarock et al. 
2008) package to produce analyses using a 3-dimensional variational (3DVAR; Barker et 
al. 2003,2004) technique.  On the other hand, the ensemble experiments used software 
from the Data Assimilation Research Testbed (DART; Anderson et al. 2009) to generate 
analyses with a 64-member ensemble using the Ensemble Adjustment Filter (EAF; 
Anderson 2001; Liu et al. 2007).  In order to take advantage of observation processing 
and quality control (QC) in WRFDA, we used WRFDA in the ensemble DA process and 
describe the practical implementation and benefits of this unique coupling. 

(a) 

(b) 



  
While several studies have directly compared variational and ensemble DA techniques 
(e.g., Houtekamer et al. 2005; Meng and Zhang 2008; Whitaker et al. 2008; Buehner et 
al. 2010a,b), here we limit direct comparison between the ensemble and deterministic 
experiments and focus instead on the impact of radiance DA within the two datasets.  
Section 2 details model configurations and the experimental setup, while section 3 
describes the implementation and rationale for the WRFDA-DART coupled system.  
Results are presented in section 4 before concluding in section 5. 
 
2.  Model configurations and experimental design 
 
While deterministic and ensemble NWP systems inherently differ, a number of settings 
were fixed for all experiments.  These general parameters are now described before 
detailing the individual experimental configurations. 
 
a. Common configuration settings 
 
All experiments ran over the same triple-nested computational domain (Fig. 1a) and a 
new 72-hr weather forecast was generated by version 3.1.1 of the WRF-ARW model 
every 6 hours beginning 1800 UTC 03 August 2009 and ending 1200 UTC 09 August 
2009, inclusive (hereafter, “experimental period”).  Horizontal grid spacing in the 
outermost domain (d01) was 45-km and the grid length was reduced by a factor of three 
in each nest.  That is, the innermost domain (d03) used 5-km horizontal grid spacing and 
the grid length in the middle domain (d02) was 15-km.  There were forty-five (45) 
vertical levels and the model top was 30-hPa.  Physical parameterizations were held 
constant across the three domains and experiments, except no cumulus parameterization 
scheme was used in d03.  Lateral boundary conditions (LBCs) for the WRF forecasts 
were provided by the Global Forecast System (GFS). 
 
Many aspects regarding DA were also common to all experiments.  An observation 
window of ± 3 hours from the analysis time was used for all observation types, and DA 
was performed in the outer domain (d01) only.  Additionally, each experiment employed 
“full-cycling” with a six-hourly period.  More specifically, the previous 6-hr forecast 
served as the background (or “first-guess”) for the current analysis cycle and subsequent 
WRF forecasts.  None of the experiments used any type of cyclone relocation.  Thus, 
analyses and forecasts were prone to large track errors if previous forecasts were 
erroneous.  
 
The specific deterministic and ensemble settings are now described. 
 
b. Deterministic configurations 
 
DA in the deterministic configurations was performed using WRFDA’s 3DVAR 
technique using a regional background error (BE) covariance matrix generated 
specifically for this domain (Fig. 1a) using the “NMC method” (Parrish and Derber 



1992).  This formulation of the BE is flow-independent and differs significantly from the 
specification of the BE in the ensemble system. 
 
WRFDA’s 3DVAR system generates a best-fit “analysis” considering two sources of 
initial information: 1) observations at irregularly spaced points, and 2) a background (or 
“first-guess”) field, typically taken to be a short-term, gridded model forecast.  
Associated with the background and observations are their error characteristics.  Given 
the background, observations, and errors, the analysis (x) can be determined by 
minimizing a scalar cost-function (J) given by  
 
                                  ,      (1) 
 
where, xB denotes the background, y is the observations, and B and R represent the 
background and observation error covariances, respectively.  H is the (potentially non-
linear) “observation operator” that transforms model-predicted variables to observed 
quantities and interpolates values at grid-points to the observation locations.  To 
assimilate satellite radiances, a radiative transfer model (RTM) is coupled to the 3DVAR 
system and used as an observation operator to convert the temperature and humidity 
profiles into brightness temperatures.  Eq. (1) is solved iteratively until the value of x is 
found that minimizes J, and can be rewritten as 
 

J = JB + JO,       (2) 
 

where JB and JO are the first and second terms on the RHS of Eq. (1) that represent the 
relative contribution to J from the background and observations, respectively.  
  
The GFS analysis valid 1200 UTC 03 August served as the initial conditions (ICs) to 
generate a 6-hr WRF forecast (valid 1800 UTC 03 August) that was used as the 
background for the first analysis.  Two deterministic cycling experiments ran throughout 
the experimental period and were configured similarly, except the first experiment 
(3dvar_conv) assimilated solely conventional observations2

 

, including metar, synop, ship, 
buoy, and radiosonde data, while the second (3dvar_conv+RAD) also assimilated satellite 
radiances.  Each analysis (every 6-hrs) initialized a 72-hr WRF-ARW forecast.  Given 
these configurations, the impact of satellite radiance DA was clearly isolated and 
assessed.  

The experiment that assimilated radiances used data from Advanced Microwave 
Sounding Units A and B (AMSU-A, AMSU-B) and Microwave Humidity Sounder 
(MHS) sensors outfitted on NOAA's Polar Orbiting Environmental Satellites (POES).  
The AMSU-A sensor is most sensitive to the atmosphere’s temperature profile, while the 
AMSU-B and MHS sensors are most sensitive to moisture.  All satellite data were 
thinned on a 90-km mesh grid and subjected to variational bias correction (Auligné et al. 
2007).  Radiances were assimilated over land and sea, but QC settings only permitted 
non-precipitating sky radiances to be assimilated.  Table 1 lists the satellite IDs, sensors, 
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J(x) = 1
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(x - xB )T B-1(x - xB ) + 1
2

[y - H (x)]T R-1[y - H (x)]



and channels that were used.  As satellite positions change with time, data from a given 
satellite may have been unavailable over the computational domain at a particular 
analysis time.  
 

Satellite ID Sensor Channels 
NOAA-15 AMSU-A 4,5,6,7,8 
NOAA-15 AMSU-B 3,5 
NOAA-18 AMSU-A 4,5,6,7,8 
NOAA-18 MHS 3,4,5 
METOP-02 AMSU-A 4,5,6,8 
METOP-02 MHS 3,4,5 

      Table 1.  Satellite IDs, sensors, and channels used in the experiments 
   that assimilated radiances. 
 
c. Ensemble configurations 
 
A 64-member ensemble was initially constructed by randomly perturbing the 1200 UTC 
03 August GFS analysis.  Using these perturbed ICs, a 6-hr forecast was run for each 
member (valid 1800 UTC 03 August), and these backgrounds were used as input for the 
first DART-EAF analysis.   
 
The EAF generates background error covariances by using flow-dependent statistics from 
the ensemble.  For a detailed description of the EAF, the reader is referred to Anderson 
(2001) and Eqs. 2.1-2.13 in Liu. et al. (2007). 
 
Two ensemble experiments were run that were configured similarly to the deterministic 
tests.  The first (DART_conv) utilized the full suite of conventional observations, while 
the second (DART_conv+RAD) assimilated radiances, as well (Table 1), thus permitting 
an assessment of the impact of satellite DA within an ensemble framework.  A mean 
analysis was computed each DA cycle (every 6-hrs) and used as the ICs for 72-hr WRF-
ARW forecasts. 
 
The four experiments are summarized in Table 2.  Given the similar experimental designs 
within the deterministic and ensemble sets, it is interesting to compare the two sets.  
While we will mention interesting differences between the ensemble and deterministic 
output, we stress that a rigorous comparison of the merits of ensemble versus 
deterministic DA and modeling is not the intent of this paper. 
 

Experiment Name Type Radiances Assimilated? 
3dvar_conv Deterministic No 

3dvar_conv+RAD Deterministic Yes 
DART_conv Ensemble No 

DART_conv+RAD Ensemble Yes 
   Table 2.  Summary of the four experiments. 
 
 



3.  Coupling of WRFDA and DART 
 
The ensemble experiments used DART to generate each EAF analysis.  However, DART 
can only process input observations if they are in the DART-specific “observation 
sequence” format (explained at 
http://www.image.ucar.edu/DAReS/DART/DART_Observations.php).  While some 
codes to convert various observation formats into the observation sequence are provided 
in the DART package, it is ultimately the user’s responsibility to properly encode the 
observations. 
 
We used WRFDA-3DVAR as an intermediate step in the production of the observation 
sequence.  Currently, WRFDA can process input conventional observations in both 
“little_r” ascii and NCEP PREPBUFR formats.  Radiances are solely processed in BUFR 
format.  Although little_r and PREPBUFR data can be converted directly into the DART 
format, there are several advantages to using WRFDA as an intermediate step to produce 
the observation sequence.  For example, WRFDA’s QC features are used to reject 
observations deemed likely to be incorrect based on the first-guess field, thus preventing 
bad data from entering DART.  Additionally, observational error characteristics are 
assigned through WRFDA and subsequently used in DART. 
 
However, the greatest benefits from this procedure are realized when satellite radiances 
are assimilated.  In fact, currently, satellite radiance measurements cannot be imported 
directly into DART since DART is not coupled to a RTM.  But, as WRFDA is coupled to 
a RTM, it can easily calculate the brightness temperatures from the temperature and 
humidity profiles.  Additionally, the raw brightness temperatures require bias correction, 
which cannot be done by DART but is accomplished quickly and easily by WRFDA.  
WRFDA also QCs the brightness temperatures.  
 
Practical implementation of the WRFDA/DART coupling is now detailed. 
 
a) Conventional observations 
 
Consider an ensemble comprised of k = 1,2, … , n members and pc conventional 
observations at a given analysis time (for our ensemble, n = 64).  Therefore, there were n 
background fields (from the previous cycle’s short-term forecasts).  First, WRFDA-
3DVAR was run a total of n times without iterative minimization (zero iterations) using 
the same input observations but the kth member’s background field as input.  Even 
without iterative minimization, WRFDA’s observation operators were applied to the kth 
background at each of the pc points.  Output from each 3DVAR run contained the 
observation values (identical for each of the n runs), innovations (observation minus 
background), QC information, and observation error characteristics at each of the pc 
locations.  Given the innovation and observation, the background value at the pcth 
observation point was obtained for the kth member.  
 
Next, a maximum of n*pc point background values and pc observations were converted 
into the DART observation sequence format.  Given the n background fields, it was 



possible that some members rejected a particular observation (based on the innovation 
and observational error characteristics) while other members accepted it.  A conventional 
observation was only inserted into the observation sequence if it passed the QC standards 
for all members.  Finally, while DART typically applies forward observation operators to 
the prior (state before assimilation) ensemble, since the observation operators were 
applied using 3DVAR and the background values at observations points were placed in 
the observation sequence, the DART code was modified to skip the application of these 
prior operators.  DART observation operators were only applied to the posterior (state 
immediately after assimilation) ensemble.  
 
b) Satellite radiances/brightness temperatures 
 
The process to code brightness temperatures in the observation sequence followed the 
same procedure as the conventional observations, but there were a few additional 
complexities.  First, whereas each conventional observation was associated with a 
specific vertical level, radiances were not.  Rather, information throughout the 
atmospheric column was used to determine the brightness temperature.  However, we 
provided DART with an approximate vertical location for each brightness temperature by 
utilizing the weighting function (Petty 2004) at each grid-point where a radiance was 
assimilated.  The weighting function provides information about the vertical level(s) that 
contribute most to the change in brightness temperature.  Specifically, the vertical level 
for each brightness temperature was specified as the model level at which the weighting 
function was maximized.   
 
Second, for radiance processing, we only utilized QC flags and observation errors from 
the 3DVAR run that used the mean background field as input.  This method differs from 
the manner in which conventional observations were treated, where only those 
conventional observations that passed QC tests for each ensemble member were kept.  
However, had we followed the approach used for conventional observations, about 50% 
fewer brightness temperatures would have been assimilated in the ensemble experiment. 
 
Fig. 2 reveals this method permitted the assimilation of comparable numbers of radiance 
observations in both the DART_conv+RAD and 3dvar_conv+RAD experiments.  In fact, 
slightly more radiances were assimilated by the DART_conv+RAD experiment than the 
3dvar_conv+RAD experiment, likely because the ensemble mean background field was 
better than the deterministic first-guess, thus leading to fewer rejected observations.   
 
 
 
 
 



 
 

Fig. 2.  Total number of brightness temperature observations that were actually 
assimilated for each analysis.  See Table 2 for meaning of the legend. 

 
4.  Results 
 
 The “best-track” analysis of typhoon Morakot by the Joint Typhoon Warning Center 
(JTWC) was used as “truth” when verifying model forecasts and analyses of maximum 
wind speed (WSmax), minimum sea-level pressure (SLPmin), and track.  Verification was 
performed on the native model grids, and we focus on results from the middle domain 
(d02), aggregated over all forecasts and analyses from 1800 UTC 04 August through 
1200 UTC 09 August, inclusive. 
 
a) Track errors 
 
While the 3dvar_conv+RAD experiment produced better average analyses and 6-hr 
forecasts of Morakot’s track (Fig. 3) than the 3dvar_conv experiment, after the 12-hr 
forecast time, the two curves intersected several times, indicating neither experiment 
improved over the other at forecast lengths > 12-hrs.  The two ensemble experiments 
generated similar mean track errors, as well.  It is noteworthy that after the 36-hr time 
period track forecasts from the ensemble were substantially better than those from the 
deterministic experiments.  



 
b) Minimum SLP errors 
 
The large (10-19 hPa) SLPmin errors (Fig. 4) can be attributed to the relatively coarse 
horizontal grid spacing (15-km) in the middle domain.  Nonetheless, there were distinct 
trends amongst the experiments.  For example, with the exception of the 72-hr forecast 
time, the 3dvar_conv+RAD experiment yielded better SLPmin forecasts than the 
3dvar_conv experiment.  Similarly, assimilating radiances within the ensemble 
forecasting system resulted in SLPmin errors that were lower than those when radiances 
were not assimilated.  
 
c) Maximum wind speed errors 
 
WSmax error trends (Fig. 5) were similar to those of SLPmin.  The ensemble 
DART_conv+RAD experiment produced better forecasts than the DART_conv 
experiment.  Additionally, after 18 hours, the 3DVAR experiment with radiances 
produced better forecasts than the experiment without radiances. 
 
5.  Discussion and summary 
 
DA in both deterministic and ensemble frameworks was employed to study typhoon 
Morakot between 03 and 09 August 2009.  All experiments used 6-hrly full-cycling and 
produced 72-hr forecasts 4 times per day (from the mean analysis in the ensemble 
experiments).  The experiments were configured to clearly isolate the impact of 
assimilating AMSU satellite radiances in regional deterministic and ensemble settings. 
 
The deterministic experiments used a 3DVAR DA system, while the ensemble 
experiments used a coupled WRFDA-DART system.  While it is not necessary to couple 
DART to WRFDA if just conventional observations are desired, the coupled system 
allows for improved QC of the observations.  However, when radiances are assimilated, 
coupling DART to WRFDA is critical to permit proper QC and bias correction of 
brightness temperatures.   
  
On average, those experiments that assimilated radiances produced better forecasts of 
minimum sea level pressure and maximum wind speeds than the corresponding 
experiments that assimilated conventional observations only.  Therefore, the addition of 
satellite radiances into the observational datastream may be helpful for predicting the 
intensity of tropical cyclones (TCs).  However, track forecasts within the two datasets 
behaved similarly, in that assimilating radiances did not appear to have a clear impact. 
 
The marginal impact of radiances on TC track forecasts is not without precedent, as 
Zapotocny et al. (2007) noted that forecasts of TC tracks were relatively insensitive to 
radiance data.  At this time, the reasons for this behavior are unclear and warrant more 
study, as satellite radiances can provide a wealth of data in oceanic areas where TCs 
roam.  Additional studies assimilating satellite radiances in regional settings are 
encouraged. 



 

 
 

 
 
 
Fig. 3.  Average track error (km) for selected forecast hours during the period spanning 
1800 UTC 04 August through 1200 09 August, inclusive. 

 
 
 
 

Fig. 4.  As in Fig. 3, but minimum SLP error (hPa). 



 
 
 
 
 

Fig. 5.  As in Fig. 3, but for maximum wind speed error (m/s). 
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