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Abstract

The fractal dimension of lightning has been studied
using both models and observations in the past, but both
types of studies suffered from limitations that are now
avoidable. Due to a lack of computing power and model
sophistication, the fractal dimension of simulated light-
ning has previously only been studied using either two-
dimensional models or unidirectional three-dimensional
(3D) models with extremely simplified charge distribu-
tions. Also, due to a lack of modern observing net-
works, previous studies of the fractal dimension of ob-
served lightning were limited to analyzing photographs of
flashes in which channels exited the cloud.

This study used the 3D bidirectional lightning model
of Mansell et al. (2002), which is derived from the di-
electric breakdown models of Niemeyer et al. (1984) and
Wiesmann and Zeller (1986). Flashes were simulated in
the case of a small, short-lived simulated storm with a
realistic charge distribution. The model dynamics were
run at 250 m, while the lightning resolution was made as
fine as 25 m. The fractal characteristics of these flashes
have been analyzed by calculating the correlation dimen-
sion using the method originally described in Grassberger
and Procaccia (1983). In addition, the fractal characteris-
tics of lightning flashes detected in 3D by the Oklahoma
Lightning Mapping Array (OK-LMA) during a small central
Oklahoma storm described in Bruning et al. (2007) have
also been analyzed using the aforementioned method.

The simulated and observed flashes have been com-
pared and the relationship between correlation dimension
and model resolution has been analyzed and used to in-
form the tuning of parameters in the lightning model.

1. Introduction

It has been known for some time that lightning
flashes as well as electrical discharges in general
have a structure that can be described using frac-
tal geometry and the concept of fractal dimension
(Tsonis and Elsner, 1987; Niemeyer et al., 1984).
As noted in Tsonis and Elsner (1987), there is a
great deal of variation in the structure of lightning
flashes, yet all of the varied structures have certain
commonalities that give them the unmistakable ap-
pearance of lightning.
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This unmistakable structure common to light-
ning flashes is due to self-similarity in the branching
of the lightning channels at a wide range of scales,
and this branching can be quantified using the con-
cept of fractal dimension. Unlike the more common
concept of dimension, which is always described by
an integer value, fractal dimension can and usu-
ally does take on non-integer values. In the case
of lightning, the fractal dimension describes how
densely branched the flash structure is, and gives a
measure of how completely it fills space. For exam-
ple, if the flash consisted simply of a straight line, its
dimension would be equal to 1; on the other hand, if
the flash had multiple branches that spread out in a
self-similar manner on a plane, it can be described
as having a fractal dimension between 1 and 2, with
the dimension approaching 2 in the limit of infinitely
dense branching (i.e. if the flash completely filled
the plane). Similarly, in a three dimensional space,
the fractal dimension would be a non-integer value
between 1 and 3, with the dimension approaching 3
in the limit of infinitely dense branching.

Numerous studies of the fractal character of
lightning and other electrical discharges have been
performed in the past, using both numerical models
and observations. There were limitations in each of
the previous studies that can now be avoided, how-
ever. In some of the modeling studies, the charge
distributions were much simpler than those present
in thunderstorms, and bidirectional discharges like
those that occur during lightning were not consid-
ered (Niemeyer et al., 1984; Barclay et al., 1990;
Sañudo et al., 1995). In another modeling study,
realistic thunderstorm charge distributions and bidi-
rectional discharges were simulated, but computa-
tional expense limited the researchers to using a
two dimensional model (Tan et al., 2006). In the
case of the observational study by Tsonis and El-
sner (1987), the only data available on the structure
of lightning was in the form of photographs, which
by their nature only captured two dimensional pro-
jections of lightning channels, and, in addition, only
captured parts of the flash structure that exited the
cloud.

In this study, a fully three-dimensional (3D) bidi-
rectional lightning model was used to simulate light-
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ning flashes within a simulated thunderstorm with
a realistic charge distribution. Also, the structure
of observed lightning flashes was analyzed using
data from a lightning mapping array. In the case of
both the modeled and observed flashes, the frac-
tal dimension was calculated using the correlation
dimension method.

The model setup, simulated data, and observa-
tional data used are described in section 2 of this
paper. In section 3 of the paper, the correlation di-
mension method is described. The results of the
correlation dimension calculations and an applica-
tion of those results are described in section 4. Sec-
tion 5 concludes the paper.

2. Data

The data used to determine the correlation di-
mensions in this study came from two sources: 1.)
The Oklahoma Lightning Mapping Array (OK-LMA),
and 2.) The lightning model of Mansell et al. (2002),
used within the NSSL COMMAS model (Mansell
et al., 2010).

2.1 Lightning Model Data

The model was used to simulate a small storm
with a 250 m dynamics grid spacing in both the hor-
izontal and vertical directions. The grid size was
20 km in each horizontal direction and 15 km in the
vertical. The initial conditions in the model used a
Weisman-Klemp (Weisman and Klemp, 1984) style
sounding with a surface mixing ratio of 14.5 g kg−1,
a surface temperature of 294 K, and a linear shear
profile with 10 m s−1 of shear from the surface
through 6 km. Finally, convection was initiated us-
ing an area of forcing in the lower part of the model
domain during the early part of the simulation.

Nine model runs were performed using the
same dynamics set up. Within COMMAS, the light-
ning grid resolution can be set to a fraction of the
dynamics grid resolution, and in each of these 9
runs, the lightning grid spacing was made progres-
sively finer, starting at 125 m and continuing on to
a spacing of 25 m. The model storms produced a
total number of flashes varying from over 200 per
run to around 35 per run, with smaller flash rates
occurring in the runs with finer grid spacing. Only
20-30 flashes from each run were used in the final
analysis for reasons that are discussed below in the
Methodology section.

2.2 OK-LMA Data

The OK-LMA data used was collected during
a small, short-lived central Oklahoma storm (Brun-
ing et al., 2007). The storm produced a mixture of

IC and CG lightning flashes, with 30 flashes total.
For reasons similar to those that occurred with the
model data, only 21 of these flashes were used in
the final analysis.

3. Methodology

The fractal dimension was estimated by calcu-
lating the correlation dimension (Grassberger and
Procaccia, 1983). In essence, the correlation di-
mension is found by drawing a sphere around each
point of the flash, and then determining how the nor-
malized average number of points within the sphere
changes as the radius of the sphere is increased.
Mathematically, this is done as follows: First, the
correlation sum is determined using the correlation
integral:

C (r) ≡ lim
N→∞

1
N2

N∑
i,j=1

θ (r − ‖Xi −Xj‖) (1)

In the above equation, C(r) is the correlation sum,
N is the total number of points, θ denotes the Heav-
iside step function, r is the threshold distance (i.e.
the radius of the spheres mentioned above). Finally,
Xi and Xj are the positions of the two points whose
interpoint distance is being considered.

If the data set has a fractal character, then the
relationship between the correlation sum and the
threshold distances should obey a power law,

C (r) ∝ rν (2)

where the exponent, ν, is called the correlation di-
mension. Therefore, the correlation dimension is
given by the slope of a line fitted to a log-log plot of
C(r) vs. r.

When calculating the correlation dimension of
empirical fractals, certain issues are inevitable. Var-
ious sources of error that can come into play using
this method are discussed in Theiler (1990). The
two most important sources of error are these: 1.)
Any empirical fractal will consist of a finite num-
ber of points; therefore, an exact calculation using
the infinite limit in equation 1 is not possible. This
is mostly an issue because it creates large slope
variations in the plot of C(r) vs. r at small thresh-
old distances where the spacing between adjacent
points on the fractal is of the same order as the
threshold distance. 2.) Any empirical fractal is of
a finite size; thus, as the threshold distance ap-
proaches the width of the fractal, the sum in the
correlation integral approaches N2, and therefore
C(r) approaches 1 and levels off. The effect of both
of these issues together is that there exists only
a particular threshold distance range, the ”scaling
range” (Malcai et al., 1997), where the log-log plot



of C(r) vs. r is linear. In this study, this was dealt
with by using a combination of two methods to au-
tomatically determine this range. To eliminate the
first issue, points corresponding to increasing val-
ues of r on the log-log correlation dimension plot
were ignored until the forward-differenced slopes
between ten consecutive points varied by less than
1.0. This established a lower bound on the linear
scaling range. After this condition was met, the
correlation coefficient of the fitted line was recalcu-
lated upon the addition of each subsequent point to
the plot. When the value of r2 fell below 0.9998,
additional points added to the plot were ignored,
thus establishing the upper limit of the linear scal-
ing range. The particular values for the slope vari-
ation and correlation coefficient values used were
chosen because they gave results in reasonably
good agreement with published values when they
were used to calculate correlation dimensions for
the Henon Map and the Lorenz Attractor.

Upon using this method, some flashes only had
linear scaling behavior over a very small range of
threshold distances, and thus it would have been
difficult to consider the slope of the fitted line to be
a reasonable representation of the flash’s fractal di-
mension. Many of the discarded flashes either had
a small total number of points or a small flash ex-
tent (this was an especially common occurrence in
the coarser resolution model runs). Some other dis-
carded flashes had differing fractal characteristics
in different parts of the flash. An example of this
would be a flash where there are many branches
in a bush-like formation in one region of the flash,
with one or two isolated channels propagating away
from that region. In this case the flash may still have
a fractal character, but it is difficult to assign a single
fractal dimension value to it. Examples of a both an
LMA-detected flash and a modeled flash are shown
below in Figure 1, and examples of the correlation
dimension plots corresponding to those flashes are
shown below in Figure 2.

After the results from the initial set of model
runs were found, they were used to set a param-
eter that affects the flash rate in additional runs, as
explained in the discussion below.

4. Results and Discussion

The results of the correlation dimension calcu-
lations are shown in Table 1. The average corre-
lation dimension of the model flashes varies with
the lightning grid resolution used in the model, with
finer resolution runs having higher correlation di-
mensions and coarser resolution runs having lower
correlation dimensions. The standard deviation of
the correlation dimensions also varies between the

Table 1: Correlation dimension results from Model and
LMA data.

different model resolutions, with the spread gener-
ally becoming smaller at finer resolutions. For the
LMA-detected flashes, the average correlation di-
mension falls in the middle of the range of corre-
lation dimensions from the model runs, while the
standard deviation is somewhat larger.

The most likely reason for the variations in the
fractal dimension of the model runs is as follows:
Within the lightning model, the probability of adding
adjacent points to a lightning flash is governed by
the following equation:

pi (E) =
{ 1
F (Ei − fEcrit)η for Ei > fEcrit
0 for Ei ≤ fEcrit

(3)
As explained in Mansell et al. (2002), in the

above equation pi is the probability of adding a par-
ticular point to the flash, Ei is the magnitude of the
electric field between the ith pair of channel and
adjacent nonchannel points, F is a normalization
factor found by summing the unnormalized proba-
bilities, and Ecrit is a critical threshold value for the
electric field. Also, f is a factor added to the equa-
tion to partially account for the resolution dependent
behavior of the flashes, and η is a constant that af-
fects the extent of branching in the flash structure.
For all of the model runs in this study, η was set
equal to one.

In the model, lighting is modeled as a conduct-
ing channel with a diameter equal to that of the grid
spacing (Mansell et al., 2002). At coarser resolu-
tions, this leads to the electric field surrounding the
conducting channel being lower than it would be at
fine resolutions. Thus, Ei will be less likely to ex-
ceed fEcrit at coarser resolutions. This leads to
less branching of the lightning channels as well as
smaller overall flash extents, which leads to less en-
ergy being dissipated in each flash and thus higher
flash rates for a given charging rate. The results
of this can be seen in the series plotted in red in
Figure 3, where the total number of flashes gener-
ated during the simulated storm increases greatly



FIG. 1: Spatial plot of source points from an LMA-detected flash and a modeled flash. Blue source points indicate
the earliest part of the flash and red source points indicate the latest part of the flash.

FIG. 2: a.) Log-log plot of C(r) vs. r for the LMA flash (left) and the modeled flash (right). The Solid red line
corresponds to a linear least squares fit over the scaling region of each flash. b.) Semi-log plot of forward-differenced
slopes between each point vs. r for the LMA flash (left) and modeled flash (right). In all plots the dashed gray lines
denote the fractal scaling regions of the flashes where the fits were performed.



as the lightning grid resolution is made coarser. In
the model runs used to create the data in that se-
ries, the factor f was set to one. Optimally, the total
flash number would remain constant at every res-
olution, and, typically, the value of f would be set
based on past experience along with trial and error
in an attempt to equalize the flash number. How-
ever, in this set of model runs f was always set to
one for the sake of comparison between the differ-
ent resolutions.

Since Ecrit is multiplied by f , the effect of de-
creasing the value of f is similar to decreasing the
value of Ecrit in a model that does not include the
parameter f . The branching behavior and thus frac-
tal dimension is known to depend on the value of
Ecrit (see references in Mansell et al., 2002). Due
to this, it was hypothesized that it may be possible to
set the value of f quantitatively using the correlation
dimension data. A relationship was found to do this
by setting f equal to the ratio of the correlation di-
mension at each resolution in the set of model runs
to the maximum correlation dimension for the set of
model runs (i.e. setting f = ν

max(ν) and then fitting
a line to the points on a plot of correlation dimen-
sion ratio vs. model resolution, as shown in Figure
4. Upon doing this, the equation

f =
ν

max(ν)
= −0.3003∆ + 1.0832 (4)

was found, where ∆ is the lightning grid spacing.
This relationship was used to set the value of f in
a set of additional model runs, and the blue series
in Figure 3 was obtained for total flash number vs.
model resolution in the these additional runs. As
can be seen, this method of setting f led to a much
narrower variation in total flash number across the
different resolutions. Additional testing is needed
using different storms and different storm types, but
this result supports the idea of using equation 4 to
set the parameter f .

The correlation dimension results may also be
useful for adjusting the value of η. Although the av-
erage correlation dimension of the observed flashes
falls between that of the 62.5 m and 83.33 m model
runs, finer resolution runs are still considered more
realistic due to the small diameter of actual light-
ning channels. Assuming that the linear trend of in-
creasing correlation dimension with finer and finer
lightning grid resolution continues, the correlation
dimension of a simulated flash with a realistic chan-
nel diameter would be greater than the value of 1.96
obtained in the 25 m run. Since this is larger than
the average correlation dimension value found for
the observed flashes, and since higher values of
η lessen the branching of the simulated lightning
channel, this could indicate a need to set η to a

FIG. 3: Total number of flashes throughout the dura-
tion of the simulated storm vs. lightning model resolution.
The red line uses data from the original set of model runs
where f was always set equal to 1, while the blue line
uses data from model runs where the value of f was set
using equation 4.

FIG. 4: Ratio of correlation dimension to maximum cor-
relation dimension vs. lightning model resolution for the
original set of model runs

value greater than 1.

5. Conclusion

It has been shown in this study that the aver-
age correlation dimension of lightning flashes de-
tected by the OK-LMA in a small thunderstorm is
1.67, and that the average correlation dimension
of modeled flashes varies depending up the model
resolution. An interesting question to explore in fu-
ture research is whether or not there is any signif-
icant variation in the fractal characteristics of light-
ning between different types of storms, such as su-
percells and MCSs, or if the correlation dimension
value found in this study is typical of all storm types.
If there does exist a significant variation, correlation



dimension could possibly serve as a discriminator
of storm type.

In either case, it is interesting to ask why the
correlation dimension of observed flashes has the
value that it has. Two-dimensional laboratory elec-
trical discharges in gaseous media have a fractal di-
mension of 1.7 (Pietronero and Wiesmann, 1984),
and 3D discharges should have an even higher frac-
tal dimension. Therefore, the value of 1.67 for 3D
flashes is somewhat low based on what might be
expected from laboratory discharges. It is possi-
ble that this is simply due to poor sampling of the
flashes by the lightning mapping array, so it would
be interesting to see if the value of 1.67 can be repli-
cated in the future using data from newer lightning
mapping arrays with higher temporal resolution than
the OK-LMA. If the value can be replicated, one
possible reason for its size may lie in the charac-
teristics of the charge structure of thunderstorms.
This could provide another pathway for interesting
research in the future.
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