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1. Introduction

The problem of designing efficient methodologies to locate and
characterize the sources of atmospheric releases is attracting
much interest. A promising approach consists in coupling
artificial intelligence algorithms to dispersion models. Typically,
the dispersion model performs a number of simulations from
a series of tentative sources. The function of the artificial
intelligence algorithm is to determine the series of tentative
sources in order to efficiently converge toward the real source.
Concentration measurements are necessary to implement the
process. For each tentative source, the algorithm analyzes
the error between the simulated and the observed values, and
prescribes the next tentative source (or the next set of tentative
sources). Knowledge of some meteorological variables is not
strictly required in principle, but in practice may be essential
especially for large scale (i.e., no fixed winds) dispersion
scenarios. The main appeal of this paradigm is that the
dispersion model does not need to be modified. Therefore,
the method is easy to implement with any well established
dispersion model independent of its complexity and internal
working.

Several popular artificial intelligence algorithms use
Bayesian inference coupled with stochastic sampling (Gelman
et al., 2003; Johannesson et al., 2004; Senocak et al.,
2008). A different approach based on evolutionary algorithms
has also been proposed and tested (Haupt et al., 2007;
Allen et al., 2007; Cervone and Franzese, 2010b; Cervone
and Franzese, 2010a). Evolutionary computation algorithms
(of which genetic algorithms are one of the main paradigms,
in addition to evolutionary strategy, evolutionary programming
and genetic programming) are iterative stochastic methods
that evolve in parallel a set of potential solutions through a
trial and error process. Potential solutions are encoded as
vectors of values, which can include a number of source
characteristics such as, e.g., its geometry and size, location,
and emission rate. The potential solutions are evaluated
according to an objective function (often referred to as fitness
function, error function, or skill score), which is a measure
of the difference between the concentration field simulated
by the dispersion model from a tentative source, and the
available observations. The evolutionary process consists
of selecting one or more candidate solutions whose vector
values are modified to minimize the objective function. A
selection process is invoked that determine which of the
new solutions survive into the next generation. While the
methodologies and algorithms that are subsumed by this
name are numerous, most of them share one fundamental
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characteristic: they use non-deterministic operators such
as mutation and recombination as the main engine of the
evolutionary process.

These operators are semi-blind, and the evolution is not
guided by knowledge learned in the past generations. In
fact, most evolutionary computation algorithms are inspired
by the principles of Darwinian evolution, defined by "...one
general law, leading to the advancement of all organic beings,
namely, multiply, vary, let the strongest live and the weakest
die" (Darwin, 1859). The Darwinian evolution model is simple
and fast to simulate, and it is domain-independent. Because
of these features, evolutionary algorithms have been applied
to a wide range of optimization problems (Ashlock, 2006).

In this paper we introduce a multi-strategy iterative
approach that pairs the traditional Darwinian operators with a
non-Darwinian machine learning evolutionary process. This
approach provides a different search strategy where new
candidate solutions are generated by an inductive inference
reasoning process. The main drawback compared with
traditional algorithms is higher algorithm complexity and a
possible increase of computational needs.

There have been several attempts to extend the
traditional Darwinian operators with statistical and machine
learning approaches that use history information from the
evolution to guide the search process. The main challenges
are to avoid local maxima and increase the rate of
convergence. The majority of such methods use some form
of memory and/or learning to direct the evolution towards
particular directions thought more promising (Grefenstette,
1991; Sebag et al., 1997; Reynolds, 1999; Hamda et al.,
2002).

Because evolutionary computation algorithms evolve a
number of individuals in parallel, it is possible to learn from
the ‘experience’ of entire populations. A similar type of
biological evolution does not exist, because in nature there is
no mechanism to evolve entire species.

Estimation-of-Distribution Algorithms (EDA) are a form of
evolutionary algorithms where an entire population may be
approximated with a probability distribution (Lozano, 2006).
New candidate solutions are not chosen at random, but using
statistical information from the sampling distribution. The aim
is to avoid premature convergence and to provide a more
compact representation.

Discriminating between best and worst performing
individuals could provide additional information on how to
guide the evolutionary process. The Learnable Evolution
Model (LEM) includes a machine learning rule induction
algorithm to learn attributional rules which discriminate
between best and worst performing candidate solutions
(Cervone et al., 2000; Cervone et al., 2000). New individuals
are then generated according to inductive hypotheses



discovered by the machine learning program. The main
difference with Darwinian-type evolutionary algorithms is
the way new individuals are generated. In contrast
to Darwinian operators of mutation and/or recombination,
Machine Learning (ML) conducts a reasoning process in
the creation of new individuals. Specifically, at each step
(or selected steps) of evolution, a machine learning method
generates hypotheses characterizing differences between
high-performing and low-performing individuals. These
hypotheses are then instantiated in various ways to generate
new individuals The hypotheses indicate the areas in the
search space that are likely to contain high-performing
individuals. New individuals are selected from these areas
and then classified as belonging to either a high-performance
or a low-performance group, depending on their fitness value.
These groups are then differentiated by the machine learning
program, yielding a new hypothesis as to the likely location of
the global solution.

The possible advantages in generating new individuals
of ML compared to traditional Darwinian operations mainly
depend on the evolution length, defined as the number of
function evaluations needed to determine the target solution,
and the evolution time, defined as the execution time required
to achieve this solution. A choice between ML and Darwinian
algorithms is based on the tradeoff between the complexity
of the population generating operators and the evolution
length. In our case, the proposed operations of hypothesis
generation and instantiation are more computationally costly
than mutation and/or crossover, but the evolution length
is typically much shorter than in Darwinian evolutionary
algorithms.

In all applications where the evaluation of a new individual
is computationally taxing, speeding up the convergence rate
is paramount. Therefore ML as engine of evolution is only
convenient for problems with high objective function evaluation
complexity. Non-Darwinian evolution is not a replacement for
traditional evolutionary algorithms. It is a new paradigm to
speed-up a certain class of problems that contain particularly
complex evolution functions.

The problem of source detection of atmospheric pollu-
tants is an ideal problem due to the complexity of the func-
tion evaluation which may require expensive numerical simu-
lations.

This paper describes an application of non-Darwinian
evolution for the source characterization of atmospheric
releases.

The AQ4SD program (Cervone et al., 2010) was used
as main engine of evolution to generate the hypotheses.
The proposed system differs significantly from earlier LEM
applications in three ways: a) The reasoning process
generates hypotheses (rules) that discriminate between high
and low performing individuals; b) The native real value
encoding of variables; and c) The selection mechanism that
determines the makeup of the next generation.

The new system was tested in two cases: simulated data
generated by synthetic releases, and the real concentration
measurements from the Prairie Grass controlled field experi-
ment. Initial experiments show that guiding evolutionary pro-
cesses by hypotheses generation and instantiation can dra-

matically speed up convergence in the source detection prob-
lem. (Barad, 1958).

2. Methodology

The proposed methodology is based on an iterative process
guided by hypotheses generation and instantiation. Similarly
to an evolutionary computation methodology, it evolves
solutions in parallel, and evaluates them according to an
objective function. However, the traditional Darwinian birth
operators are paired with a machine learning process that
learns hypotheses, in the form of rules, to describe the
characteristics of the highest performing candidate solutions.
Specifically, at each step of evolution, a population is
divided into High-performing (H-group) and Low-performing
individuals (L-group), according to the fitness score. These
groups are selected from the current population, or a
combination of the current and past populations. Then a
learning program creates general hypotheses distinguishing
between these two groups, which are instantiated in various
ways to produce new candidate individuals. New births occur
in the areas of the search space identified as regions most
favorable for good solutions.

2.1 Hypotheses Generation

The central core of the system is the machine learning rule
induction algorithm to generate the hypotheses. In this
study, the AQ4SD program was specifically designed and
optimized to be run iteratively and to drive a Non-Darwinian
evolutionary process (Cervone et al., 2010). AQ is a
machine learning classifier methodology which generalizes
sets of examples with respect to one or more sets of counter-
examples (Michalski, 1969; Michalski, 1983; Mitchell, 1997;
Cervone et al., 2001; Cervone et al., 2010).

The input data for AQ is therefore made of labeled data,
or in other words data which is already assigned to a particular
class or group.

AQ is a form of supervised learning, wherein classified
data are generalized to identify the characteristics of the entire
class. More details on the AQ classifier are given in (Cervone
et al., 2010)

In general, a multivariate description is a classified event
of type x1, ..., xk , and c, where each x is an attribute value
and c is the class it belongs into. For each class c, AQ
considers as positive all the events that belong to class c, and
as negative all the events belonging to the other classes. In
its simplest form, given two sets of multivariate descriptions
P1, ..., Pn (positive events) and N1, ..., Nm (negative events),
AQ finds rules that cover all P examples, and do not cover
any of the N examples.

(negatives), patterns of attribute-values (or rules) that dis-
criminate the characteristics of the positive events with respect
to the negative events. Such patterns are generalizations of
the individual positive events, and depending on AQ’s mode
of operation may vary from being totally complete (covering all
positives) and consistent (not covering any of the negatives),
to accepting a tradeoff of coverage to gain simplicity of pat-
terns.



Table 1: Sample candidate solutions generated
X Y Wind Direction Height Q Stability Class

101.26 88.12 128 11 33 D
101.29 70.99 128 15 77 A
101.31 121.22 128 13 13 C

AQ uses a highly descriptive representation language to
represent the learned knowledge. In particular it uses rules to
describe patterns in the data. A prototypical AQ rule is defined
as the following logical equation:

Consequent←− Premise @ Exception (1)

where Consequent, Premise and Exception are conjunctions
of Conditions. A Condition is simply a relation between an
attribute and a set of values it can take:

[Attribute . Relation . Value(s)] (2)

Whereas Premise and Condition are mandatory, the Exception
is optional and used only in very special circumstances.
Although Exception has been implemented in AQ4SD, it is
not being used, because it often leads to over fitting in the
presence of very noisy data.

2.2 Hypotheses Instantiation

Once rules are generated, they can be easily instantiated to
create new candidate solutions by generating attribute-value
pairs. This is arguably one of the main advantages in using
attributional rulesets to drive the evolutionary process.

The learned hypotheses (attributional rules) are used to
generate new individuals by randomizing variables within the
ranges of values defined by the rule conditions. If a rule
does not refer to some variable, it means that this variable
was not needed for distinguishing between the H-group and
the L-group. A problem then arises as to what values
should be assigned to such variables when generating new
individuals. There can be different methods for handling this
problem. Early experimental results showed that values can
be assigned randomly within the range of the individuals in the
current population. This is a conservative method that does
not introduce values not already present in the population. We
will investigate alternative approaches, as for example using
previous rules, or selecting only high performing individuals.

Assuming an optimization problem with six variables
Longitude, latitude, Wind Direction, Height, Q, Stability
Class, new sample candidate solutions generating through the
instantiation of rule are shown in Table 1. The values for
the first three variables (X, Y, Wind Direction) are assigned
by taking a random value in the range of the possible values
cited in the rules. The other variables, are set according to the
values of randomly chosen candidate solutions in the current
population.

2.3 Evolutionary Algorithm

The evolutionary process can use hypothesis generation and
instantiation as the sole engine or evolution, or pair it with
traditional Darwinian operators of mutation and recombination.
The two strategies are paired because hypothesis creation

and instantiation is more powerful than mutations and/or
recombination, but computationally much more costly. By
allowing the interchangeable execution of both Darwinian and
non-Darwinian operators, our method can utilize the best
features of both paradigms. figure 1 presents a general flow
diagram of the methodology

The Initialize population module creates individuals
randomly or according to a given distribution. Select Mode
determines if new individuals are generated according to non-
Darwinian (default) or Darwinian operators, and alternates
depending on the convergence rate. The toggling between two
modes continues until the termination condition is satisfied.

In Machine learning mode, two methods of selecting H-
and L- groups are supported: Fitness-based and Population-
Based. In the Fitness-based method, the H-group and L-group
consist of individuals whose fitness is above the High Fitness
Threshold (HFT) and below the Low Fitness threshold (LFT),
respectively. In the Population-based method, the H-group
and L-group consist of portions of the population defined by
the High Population Threshold (HPT) and the Low Population
Threshold (LPT), respectively. HPT defines the percentage of
the highest performing individuals, and LPT the percentage of
the lowest performing individuals to be selected for the H- and
L-group, respectively. HFT, LFT, HPT and LPT are controllable
parameters.

The generate new individuals via hypothesis generation
and instantiation module employs the AQ4SD learning
system (Cervone et al., 2010) for generating hypotheses
distinguishing between H- and L-groups.

In Darwinian mode new individuals are generated by se-
lecting representative individuals, and mutating and/or recom-
bining them. The Select parents operator selects representa-
tive individuals (parents) from the current population according
to some selection method, such as fitness proportional selec-
tion, uniform selection, tournament selection, etc. In the cur-
rent work we have used a method based on fitness propor-
tional selection, where candidate solutions with a smaller error
are more likely to be selected, but at the same time, leaving a
chance to inferior solution to create offspring. The Generate
new individuals module creates new individuals by mutation
and/or recombination (Bäck, 1996). The mutation operator
takes one individual (the parent) and generates one offspring
(the child) by varying one or more of its variables. The recom-
bination operator, also known as crossover, takes two individ-
uals (the parents) as input, and it generates one offspring (the
child). The variables of the offspring are a mix of the variables
of the two parents. In the current work we have not used the
recombination operator, but only an adaptive mutation opera-
tor as described in (Cervone et al., 2010). The next operations
are common for both modes of operation.

The Evaluate new individuals module determines the
fitness of each individual. In the proposed research, evaluating
an individual involves running a numerical transport and
dispersion simulation, and comparing the simulated and the
observed concentrations. This is a very computationally
expensive operation, and one of the driving forces behind the
proposed research.

The Population survival selection combines previous
individuals with the newly generated ones. The proposed
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FIG. 1: Flowchart of the non-Darwinian evolutionary
algorithm.

methodology uses binary tournament as to select new
individuals. Specifically, old and new candidate solutions are
merged them together in a single population. Iteratively, two
solutions are selected at random and compared. The one
with the higher error is removed from the population, while the
one with smaller error is kept for subsequent selections. The
process continues until the population is resized to the proper
value.

The Adjust parameters module sets the settings for
both non-Darwinian and Darwinian mode based on statistics
of previous generations. Adjustments involve varying the
generality of the rules, control parameters of the learning
algorithm, or adjusting the mutation rate.

The Terminating condition determines when to stop the
execution of the program. The condition can be defined by
the maximal number of function evaluations, by the number
of generations without improvement, or by a limit on the
execution time

2.4 Transport and Dispersion Simulations

The dispersion model which will be used to perform the
forward simulations is a simple analytical Gaussian model,
which is adequate to give satisfactory results for simple and
short range dispersion configurations such as Prairie Grass.
More complex scenarios may require more sophisticated
numerical models. We use the following Gaussian model
with a single reflection at the ground, which determines the

predicted mean concentration Cp at a location x , y and z
generated by a source located at xs, ys, and zs as:

Cp(x , y , z, xs, ys, zs) =
Qgy gz

2πU[(σ2
s + σ2

y )(σ2
s + σ2

z )]1/2
(3)
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where Q is the source mass emission rate, U is the wind
speed, σy (x , xs;ψ) and σz (x , xs;ψ) are the crosswind and
vertical dispersion coefficients (i.e. the plume spreads) where
ψ describes the atmospheric stability class (i.e., ψ = A to
ψ = F ), and σ2

s = σ2
y (xs, xs,ψ) = σ2

z (xs, xs,ψ) is a measure
of the area of the source. The result of the simulation is the
concentration field generated by the release along an arbitrary
wind direction θ. The dispersion coefficients were computed
from the tabulated curves of Briggs (Arya, 1999). In this
study, U and ψ are assumed to be known, and their values
set according to the observations reported in the Prairie Grass
dataset. Each candidate solution is thus comprised of the 6
variables xs, ys, zs, Q, σs and θ.

2.5 The Prairie Grass field dispersion experiment

The Prairie Grass experiment is a well documented campaign
of dispersion measurements in controlled conditions (Barad,
1958). The experiment consists in 68 releases of trace gas
SO2 from a ground level point source. Mean concentration
samplers were deployed along five arcs located at 50 m, 100
m, 200 m, 400 m and 800 m from the source. Extensive
meteorological measurements were collected during the
experiments. The stability of the atmosphere depends on the
day and time of the release, and experiments were conducted
under all stability classes.

figure 2 shows reconstructed concentration fields aver-
aged over all releases in each atmospheric class, with the wind
direction aligned with the horizontal axis.

In addition of the observed Prairie Grass measurements,
we have created a synthetic dataset simulating each of
the 68 releases using the Gaussian model Eq. (3). The
synthetic dataset is generated using the source, wind
characteristics, and atmospheric class of each of the original
Prairie Grass experiment, and the simulated concentrations
are recorded at the corresponding sensor locations for the
original experiments. The synthetic dataset is generated
for two reasons. First, it allows the assessment of the
accuracy of the model simulations with respect to the observed
measurements. This gives an indication of how much of
the error in the predicted source location of the real case
is attributable to the search algorithm and how much is
intrinsic to the dispersion model; second, it provides an ideal
dataset against which the search algorithm can be tested
and assessed in the absence of noise and of modeling
uncertainties.

figure 3 illustrates the differences between the simulated
and observed concentrations for two of the Prairie Grass
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FIG. 2: Reconstructed concentration fields averaged over
all releases in each atmospheric class, with the wind direction
aligned with the horizontal axis.
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FIG. 3: Comparison between two synthetic and observed
concentration fields. A small error in wind direction leads to
large errors in the reconstructed field.

releases. The left graphs show the concentration observed
at each sensor, plotted along with the simulated concentration
profile. The sensors are positioned along the five concentric
arcs indicated by alternate white and gray background.
Within each arc, the sensors are sorted counter-clockwise.
The middle and right graphs show the concentration field
reconstructed from the measurements and from the simulated
values respectively. The top graphs refer to release 55,
which shows a very good agreement between the observed
and simulated values. The bottom graphs show release 17,
where there is a large discrepancy between the observed
and simulated values. The shift in the location of the peak
concentration is most likely due to errors in the measurement
of the wind direction.

The accuracy of the simulations of all Prairie Grass
experiments was assessed by calculating the following
measure of the error between simulations and observations
(Allen et al., 2007):

∆c =

s
[log10(Co + 1)− log10(Cp + 1)]2

[log10(Co + 1)]2
(6)

where Co and Cp are the observed and predicted concentra-
tions at the sensors locations, respectively, and the bar indi-
cates an average over all the observations. The function ∆c

was shown to be a suitable objective function for source detec-
tion algorithms (Cervone and Franzese, 2010b). In this study,
it will also be used as the objective function to be minimized by
the search algorithm.

Equation (6) was calculated for each of the 68
Prarie Grass releases. Table 2 reports ∆c and the
relevant characteristics observed at the time of the release.
The first column indicates the ID for the release (as
assigned in the original dataset). The second column is
the sum of all the concentrations measured at different
sensors. The third column is the number of observations for
each experiment, namely the number of sensors detecting
concentration. In general, unstable atmospheric conditions
(class A) corresponds to a large number of sensors because
of enhanced plume spread. Conversely, unstable atmospheric
conditions (class F) result in the smallest number of ground
measurements, because the footprint of the dispersion is
small and fewer sensors are active compared to the other
stability classes. The errors associated with the experiments
in atmospheric class F are mainly attributable to two factors:

• The fewer number of measurements compared to other
atmospheric classes generates a larger uncertainty in the
reconstructed field.

• Small errors in the observed wind direction cause large
errors in the reconstructed field (e.g., see figure 3).

The remaining columns indicate the amount of material
released, the wind velocity and direction, and the heat flux
properties recorded at the time of the Prairie Grass field
experiment. The last column indicates the atmospheric class
associated with the conditions at the time of the experiment.



ψ ID HeatFlux (W/m2) Q (g/s) U (m/s) θ (deg) # Measurements ΣID
C (mg/m3) ∆c

A 15 129.90 95.5 2.90 209 135 5554 0.38
A 16 213.54 93.0 2.96 192 158 3621 0.31
A 25 94.99 101.4 2.48 177 224 5747 0.47
A 47 217.33 103.1 3.02 243 148 4543 0.21
A 52 293.13 104.0 4.04 132 196 3999 0.44

B 1 81.50 81.5 2.39 150 223 4882 0.65
B 2 37.12 83.9 1.74 100 202 5231 0.88
B 7 265.13 89.9 4.02 188 260 3482 0.75
B 10 203.11 92.1 4.15 225 155 3407 0.38
B 48S 140.17 104.0 2.77 216 206 3714 0.68

C 5 202.83 77.8 5.15 176 138 2759 0.35
C 8 127.33 91.1 4.06 184 139 4138 0.30
C 9 194.07 92.0 6.11 204 154 3101 0.42
C 19 187.53 101.8 5.33 166 126 3645 0.38
C 27 239.83 98.8 5.40 184 133 3559 0.39
C 43 229.18 98.9 4.68 170 189 4146 0.49
C 44 263.20 100.7 5.39 158 177 3774 0.51
C 49 270.34 102.0 6.03 199 159 3504 0.40
C 50 331.86 102.8 6.06 215 138 3498 0.35
C 62 106.64 102.1 4.61 212 127 4266 0.26

D 6 80.10 89.5 5.99 183 110 3268 0.47
D 11 157.05 95.9 6.77 184 97 2963 0.16
D 12 284.41 99.1 7.21 194 105 2834 0.39
D 17 -15.71 56.5 2.87 184 61 5079 0.58
D 20 396.31 101.2 8.26 178 121 2879 0.55
D 21 -29.26 50.9 5.31 181 74 2563 0.53
D 22 -45.95 48.4 6.39 176 69 1847 0.45
D 23 -26.78 40.9 5.37 128 79 1664 0.19
D 24 -18.40 41.2 5.21 141 78 1642 0.14
D 26 200.05 97.6 5.68 190 161 3202 0.63
D 29 -43.29 41.5 3.40 220 132 3568 0.51
D 30 243.64 98.4 6.28 196 131 3443 0.57
D 31 155.75 96.0 6.91 225 140 3102 0.54
D 33 180.74 94.7 6.90 181 116 2621 0.47
D 34 254.66 97.4 8.46 146 99 2518 0.30
D 35S -22.23 41.8 3.40 135 67 3176 0.39
D 37 -23.12 40.3 4.00 187 81 2045 0.29
D 38 -18.13 45.4 3.70 170 63 2918 0.30
D 42 -37.95 56.4 5.27 212 78 2440 0.27
D 45 62.81 100.8 5.31 163 103 4593 0.34
D 46 -31.19 99.7 4.86 134 99 5612 0.26
D 48 198.21 104.1 6.91 214 105 2525 0.36
D 51 242.16 102.4 6.18 245 150 3755 0.58
D 54 -32.86 43.4 3.40 140 62 2981 0.38
D 55 -41.27 45.3 5.17 156 73 2039 0.21
D 56 -28.52 45.9 4.15 153 73 2668 0.20
D 57 48.22 101.5 6.42 200 119 3601 0.40
D 60 -36.20 38.5 4.04 198 66 2059 0.34
D 61 305.16 102.1 7.00 203 158 3153 0.61
D 65 -47.79 44.1 3.93 178 59 2476 0.55
D 67 -22.77 45.0 3.85 185 69 2600 0.19

E 18 -24.52 57.6 2.68 187 68 5460 0.51
E 28 -17.25 41.7 2.12 174 74 4832 0.31
E 41 -32.58 39.9 3.16 198 49 2782 0.38
E 66 -33.58 43.1 2.56 166 94 4357 0.35
E 68 -16.88 42.8 2.19 174 75 5236 0.24

F 3 -0.68 56.3 0.66 150 289 5550 1.00
F 4 -4.54 50.5 0.91 216 443 10619 0.86
F 13 -4.38 61.1 0.92 190 99 7062 0.68
F 14 -2.13 49.1 0.74 170 153 8990 0.52
F 32 -17.72 41.4 1.60 171 64 7167 0.32
F 35 -7.45 38.8 1.10 132 66 7497 0.71
F 36 -10.00 40.0 1.37 160 70 7530 0.47
F 39 -17.95 40.7 1.69 140 79 3919 0.48
F 40 -15.39 40.5 1.58 180 102 4011 0.73
F 53 -20.44 45.2 1.56 132 47 6625 0.54
F 58 -18.44 40.5 1.65 178 42 6881 0.50
F 59 -22.24 40.2 2.02 174 47 5583 0.29

Table 2: Characteristics of the 68 Prarie Grass field experiments, and the calculated error ∆c between the simulated and observed
concentrations.
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FIG. 4: Summary of the predicted distance from the real source using the observed Prairie Grass data and the synthetic data



Table 3: Summary of mean predicted distance from the real
source for the synthetic dataset and for the Prairie Grass
dataset
Stability Class A B C D E F

Mean d (m), Synthetic 0.89 1.42 2.21 3.97 5.70 387.88
Mean d (m), Prairie Grass 15.27 49.92 24.26 27.88 24.76 328.94

3. Results

The proposed methodology was tested to reconstruct the
source characteristics for both the synthetic and the observed
dataset. A total of 136 reconstructions were performed (68
for each dataset). Each reconstruction is the average of 30
runs, where each run differs only from the initial randomly
generated population of candidate solutions. A total of 4080
runs are performed, requiring under 6 hours of CPU time
on a dual core E8400 3.00GHz computer. figure 4 shows a
summary of the predicted distance from the real source using
the observed Prairie Grass data and the synthetic data. The
atmospheric class of each experiment is also shown. The light
color in each pair of columns indicates the synthetic dataset,
the darker tone indicates the observed Prairie Grass dataset.
The numbers at the base of each column indicate the Prairie
Grass experiment identifier, while the numbers at the top of
the columns report the value of the predicted distance from
the source in meters. In most cases, the difference in results
are very small. Worst results are consistently obtained with
atmospheric class F. This is to be expected as it is consistent
with the inferior performance of the dispersion model with the
cases of class F, as shown in Table 2. In general, the results
show that the proposed method performs consistently better
with the synthetic data, indicating that it is able to perfectly
characterize the source in the absence of noise and error
measurements. However, even with the observed data, the
errors are usually very small, in most cases about or smaller
than 50 m, which is the distance from the source at which the
closest ground measurements are made. Table 3 summarizes
the mean predicted distance from the real source for both the
synthetic and the Prairie Grass datasets.

3.1 Sensitivity to the number of sensors and their
measured concentrations

In the following, we investigate the relationship between the
amount of information provided to the search algorithm and
the final error in the characteristics of the source. The first test
we performed consist in a series of runs using the observed
dataset, but only using a limited number of sensors. The
runs were performed using an increasing number of sensors,
selected at random. For each number of sensors, 30 different
combinations of sensors were used. Each combination was
run 30 times with different initial random candidate solutions.
All 68 releases were simulated. figure 5 shows the cumulative
error for all 68 Prairie Grass experiments as a function of the
number of sensors actually used, and as a function of the
atmospheric class of the experiments. Each bar in figure 5 was
generated by plotting the results of 61200 runs, and shows
the results obtained for 2, 3, 4, 5, 6, 8, 10, 12, 15 and 20
sensors, grouped by atmospheric class. The error decreases
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FIG. 5: Cumulative error for all the 68 Prarie Grass cases
as a function of number of sensors and atmospheric stability
class.

non-linearly with the number of sensors. In particular, the test
shows that beyond a minimum number of sensors, there is
little gain using a large amount of information. For instance,
acceptable results are obtained with as little as 5 sensors
selected at random. As expected, figure 5 also shows that
the reconstructions of experiments conducted in atmospheric
class F are noticeably worse than the other cases.

Further insight into the relation between amount of
information required and performance of the search algorithm
is gained by another experiment, in which the measurements
were not chosen at random, but in such a way that the
sum of the concentration over the selected sensors, i.e. the
cumulative concentration, would be within a threshold range.
figure 6 shows the predicted distance to the real source
location as a function of the cumulative concentration reading,
when the search algorithm is run using only 3, 4, 6, 8, 10 and
12 sensors. Using a larger number of sensors gives results
essentially comparable with the case of 12 sensors and are
not reported. In order to eliminate the effects of different
atmospheric classes, we performed the experiments using
only releases of class D, indicating a neutral atmosphere.
The results clearly show that the number of sensors itself is
not a determining factor in the performance of the algorithm.
While there is an overall slight improvement in the results
obtained with large number of sensors, figure 6 shows that
the fundamental quantity governing performance is in fact
the cumulative concentration over the sensors. Simulations
conducted using only three sensors give results comparable
to simulations using twelve or more sensors, as long as the
cumulative distribution over the sensors is the same. In
particular, the distance d of the predicted source from the real
source is found to decreases with an approximate slope−2/3,
independent of the number of sensors considered:

d ≈ k

 X
n

C(n)
o

!−2/3

(7)

where k is a constant, and C(n)
o is the measurement of

concentration at the sensor n. At this stage it is not possible
to determine a minimum number of sensors over which



Equation (7) describes the behavior of the algorithm. This
will likely depend on the characteristics of the problem, and
perhaps on the dispersion model used. In our case, the trend
is observed already using 3 sensors, but for more complex
scenarios it is possible that the minimum number of sensors
necessary to the source characterization algorithm may be
larger than 3.

4. Conclusions

This paper presented an innovative non-Darwinian evolution-
ary algorithm applied to the problem of identifying the location
and characteristics of an unknown source of atmospheric con-
taminant. The proposed method is particularly advantageous
in problems with complex evaluation functions, where the ad-
ditional computational complexity introduced by the learning
process is offset by the smaller number of evolutions required
for convergence.

The methodology was tested using the real concentration
and meteorology measurements from the Prairie Grass field
experiment. An additional synthetic data was also generated
to conduct sensitivity studies in a noiseless environment. The
solutions were generally very accurate, e.g. the source was
often located within a few meters from the real source.

The relationship between the number of sensors, and
the accuracy of the solutions was investigated. A power law
relationship was found characterizing the calculated distance
from the real source, and the cumulative concentrations
measured at the sensors. The power law relationship was
found to be independent of the number of sensors used,
beyond a minimum threshold of 3 sensors.
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