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1. INTRODUCTION 

      
An accidental or intentional release of 

Chemical, Biological, Nuclear, or Radioactive 
(CBNR) material into the atmosphere will require 
the source of that release to be estimated from 
remote measurements of the concentration field. 
However, many existing Atmospheric Transport 
and Dispersion (AT&D) datasets measure 
dosages, which make it impossible to retrieve 
information about the instantaneous 
concentrations given the stochastic nature of 
atmospheric turbulence. To ensure that source 
term estimation (STE) algorithms will work in 
real world conditions they must be tested 
against AT&D concentration field datasets. The 
FUsing Sensor Information from Observing 
Networks (FUSION) Field Trial 2007 (FFT07) 
was executed to collect data from an abundance 
of research-grade tracer, sensor, and 
meteorological instruments suitable for testing 
current and future CBNR algorithms (Storwold 
2007).  

 The FFT07 data is partitioned into two 
datasets. The Trial dataset contains readings 
from 100 sensors, source information (location 
and amount), and abundant meteorological 
information. These data were made available to 
test and train the current CBNR algorithms. The 
Case dataset contains 104 different release 
events with limited meteorological data, 
concentration data for only four or 16 sensors, 
and no information about the source location or 
release amount. For the first phase of FFT07 
predictions of the source location and release 
amount of the Case data were submitted using a 
Genetic Algorithm (GA) coupled with an AT&D 
model. 

The CBNR algorithm used in this work is 
the GA coupled AT&D model, and this method 
has been previously successful at estimating 
source characteristics and meteorological 
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parameters necessary to predict the AT&D of a 
contaminant. The AT&D models used in this 
current study are a Gaussian Plume model and 
the Second-Order Closure Integrated Puff Model 
(SCIPuff). The GA coupled AT&D model 
iteratively compares predictions with 
observations. For this work the observations are 
from the FFT07 Trial Data. The comparison of 
these data to the predictions uses a new dual 
cost function approach, rather than a single cost 
function method used previously (Rodriguez 
2010). Additionally, strict and loose thresholds 
are applied to the concentration data to filter 
noise and a statistical analysis uses bootstrap 
sampling to quantify the uncertainty in the 
estimates of the individual releases.  

 
2. DATA 

 
The FFT07 Trial data were examined and 

Trials 15, 30, and 54 were determined to be 
representative of the group of single continuous 
releases in the dataset. The Trial data is 
available at 20 ms., therefore, to reduce noise 
two thresholds were applied to each Trial. 
Previous work (Rodriguez 2011) showed that 
the GA coupled AT&D model works best when 
the concentration data spans at least three 
orders of magnitude; thus the strict threshold is 
chosen to be 10-3 of the maximum concentration 
detected and the loose threshold is 10-4 of the 
maximum concentration detected in each Trial. 
After thresholding, each sensor is averaged over 
the duration of the release and finally, these 
data are used as the observation at each sensor 
for each Trial. Only results for Trial 15 and 30 
will be shown here and their threshold 
concentration fields can be viewed in Figure 1. 

 
3. EXPERIMENTAL METHODS 

 
The GA coupled AT&D procedure for 

source characterization has been proven to work 
with identical twin data in Allen et al. (2006, 
2007), Haupt (2005), Haupt et. al. (2006), and 
Long et. al. (2010). Like the aforementioned 
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studies, the GA begins with a set of potential 
solutions; in this study the potential solutions 
consist of wind direction, source location (x,y), 
and emission rate. Also these solutions are 
bounded, however we now use meteorological 
data available to limit the potential solution of 
wind direction to within 30 degrees clockwise or 
counterclockwise of the mean wind direction. 
Each set of potential solutions is then fed into an 
AT&D model, either the Gaussian Plume Model 
or SCIPUFF. The resulting concentration fields 
of these models are then compared via a cost 
function that is logarithmic in concentration, 

 

   

 
where: Cr is the concentration as predicted by 
the dispersion model at receptor r, Rr is the 
observation data value at receptor r, TR is the 
total number of receptors, and ε is the minimum 
concentration detected, added to avoid 
logarithms of zero and to scale them 
accordingly. The solutions with the lowest cost 
mate, mutate, and then this process iterates until 
it converges to a best solution.  

To quantify the uncertainty, the GA coupled 
AT&D method is run 100 times. Then the 
median of a bootstrap sample of 10 solutions is 
computed 1000 times. Finally the mean and 
standard deviation are then computed. The wind 
direction and location (x,y) from the mean 
bootstrap solution are then inserted in the AT&D 
model with potential emission rate solutions. The 
resulting concentration fields are then compared 
via a cost function that is linear in concentration, 

 

 

 
where: Cr is the concentration as predicted by 
the dispersion model at receptor r, Rr is the 
observation data value at receptor r, and TR is 
the total number of receptors. The solution with 
the lowest cost is then used as the emission 
rate. 

 
4. RESULTS 

 

The results for Trials 15 and 30 can be 
seen in Tables 1 and 2, respectively. The results 
listed in these tables are the absolute error of 
the mean predictions for wind direction, location 
(x,y), and emission rate. We show the emission 
rate errors when using the logarithmic in 
concentration cost function and the linear in 
concentration cost function. For all Trials and 
thresholds with the exception of one scenario 
(Trial 15 with loose threshold, using SCIPuff as 
the dispersion model) using a linear in 
concentration cost function to determine the 
emission rate shows a smaller error, therefore a 
better prediction.  

In Figure 1 we notice that Trial 15 is 
missing the upper right quadrant of the sensors. 
These sensors were either offline or did not pass 
the post processing quality control test. In this 
Trial when the strict thresholds are employed we 
lose a large quantity of data and have worse 
predictions for the source term parameters. 
Given the poor quality of data for this Trial a 
loose threshold is needed because the strict 
threshold eliminates concentration signals that 
are necessary to estimate the source term 
parameters.  

In Figure 1, Trial 30 is missing nine of the 
sensors but only three of these sensors are 
downwind of the source. In this Trial when the 
strict thresholds are employed we do not see a 
significant difference from the case when the 
loose thresholds are applied. This can also be 
seen in the similar predictions for the source 
term parameters when using the Gaussian 
Plume Model. The SCIPuff model does do better 
at predicting the source terms when using strict 
thresholds. Given the better quality of data for 
this Trial the strict threshold can be applied to 
estimate the source term parameters.  

 
5. CONCLUSIONS 
 

When using this approach with the dual 
cost functions our model results improve from 
previous experiments (Rodriguez et. al. 2010). 
The logarithmic in concentration cost function 
does well at capturing the shape and location of 
the plume, while the linear in concentration cost 
function is able to capture the higher 
concentrations necessary to predict the 
emission rate. This is true when employing loose 
or strict thresholds. Loose thresholds yield better 
results when data are sparse. Strict thresholds 
yield the best results but can only be used when 
data are of high quality. There is no significant 
difference in model results between AT&D 
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model used when the GA method is employed. 
However, the Gaussian Plume-GA method is 
much less computationally expensive.  
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Figure: 

 
Figure 1. On the top is the concentration field for Trial 15 data with loose (a) and strict (b) thresholds and 
on the bottom is the concentration field for Trial 30 data with loose (c) and strict (d) thresholds. The 
concentration data is in kg/s, however it has been logged. 
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Tables: 

Table 1. Absolute error of the prediction parameters for Trial 15. 

 Wind  
Direction 
[degrees] 

Strength 
Log Cost 

[kg/s] 

Location  
(X) 

[meters] 

Location  
(Y) 

[meters] 

Strength 
Linear Cost 

[kg/s] 

Strict  
Threshold 3 0.216 10 15 0.037 

G
au

ss
ia

n 
Loose  

Threshold 12 0.258 12 11 0.033 

Strict  
Threshold 9 0.429 884 60 0.989 

S
C

IP
uf

f 

Loose  
Threshold 4 0.003 41 3 0.035 

 
 

Table 2. Absolute error of the prediction parameters for Trial 30. 

 Wind  
Direction 
[degrees] 

Strength 
Log Cost 

[kg/s] 

Location  
(X) 

[meters] 

Location  
(Y) 

[meters] 

Strength 
Linear Cost 

[kg/s] 

Strict  
Threshold 14 0.040 122 139 0.007 

G
au

ss
ia

n 

Loose  
Threshold 12 0.029 95 113 0.008 

Strict  
Threshold 7 0.011 22 16 0.000 

S
C

IP
uf

f 

Loose  
Threshold 5 0.011 64 181 0.003 

 


