
Porting Radar Simulation Software to Python: A Case Study in the
Benefits of Python

Ryan May
Enterprise Electronics Corporation

Norman, OK

1 Introduction

Python, as a dynamic programming language, is fre-
quently used as a "glue" language–the reference being that
Python is used to glue together different parts of exist-
ing software. As a dynamic language, development time
tends to be very quick, at a cost of run-time performance.
However, for much of the code that is written, run-time
performance is unimportant; therefore a trade off that
gives rapid development can produce large gains. This
is often true in a research setting, where code turnover is
frequent as many different solutions are tried. Part of this
utility also comes from Python’s feature-filled standard
library [1], which helps a developer find needed function-
ality without spending time searching for options.

As a case study in using Python, this work will ex-
amine the process of porting an existing radar simulation
software package from straight C to a mixture of C and
Python. Various Python modules used in the porting pro-
cess and their impacts on the size, and more importantly,
functionality, of the code base will be discussed. The ease
of development for adding these features is also discussed.

2 Simulation Software

The software under study is a package for simulating
weather radar data, which uses high resolution (100m
grid spacing) numerical simulation output as an input
source [2]. The simulator relies on a set of configuration
data to control the radar hardware characteristics as well

as the operating parameters. The original code was writ-
ten in C and heavily optimized for run-time performance.
However, a single simulation still took several hours on a
single processor machine.

Two separate changes in the needs of the software were
the motivation behind incorporating the use of Python.
The first was a desire to begin using the emulator in a
classroom setting. Classroom use by students required a
large upgrade to the ease of use so as not to be a sup-
port burden for the research staff. To aid in this role, it
was recognized that the terminal interactivity (comman-
dline invocation and output to the user) and the configu-
ration file format would need to be improved. The sec-
ond requirement was the need to upgrade the code to
support simulation of dual-polarimetric radars. This re-
quired incorporating code for more sophisticated scatter-
ing models as well as the capability to select a model at
run-time–this is needed to examine the differences that
result from different approximations. Generating simu-
lated dual-polarimetric data also required changes to the
input and output (I/O) sections of the code to read in new
parameters as well as write out new generated fields. A
major consideration in switching to Python was the sim-
plicity with which NetCDF files (the format used by the
simulator) can be manipulated using Python. All of these
changes were constrained to what will be referred to as
the "frontend". The heavily optimized computational core
(the "backend") of the simulator did not require significant
changes, and thus kept mostly unchanged.

The author’s recent (at the time) experience with

1

Python in other domains gave indications that Python
was a promising choice for this additional development.
Adding to this was the fact that the author had already
created a flexible Python module for performing a vari-
ety of scattering calculations. Pupynere (or any of the
many other Python NetCDF libraries) provided a clear
and simple path for upgrading the I/O section of the code.
Python’s standard library, which contains modules for
configuration file parsing, command line parsing, and log-
ging, implied that the usability improvements could be
obtained with no need to search for reliable libraries to
serve these purposes. The standard library also contains
the ctypes module, which served as a straightforward (and
included) way to join the new Python front-end to the C-
based backend. The availability of many features within
the standard library was the final tipping point for decid-
ing to port to Python.

3 Python Standard Library
In addition to language syntax and features, part of
the rapid development times in Python comes from its
feature-filled standard library [1]. This leads many Python
developers to refer to Python as having "batteries in-
cluded." The standard library gives developers a starting
point to look for a given set of functionality: running ex-
ternal processes, working with files and paths, regular ex-
pressions, etc. In addition to the benefit as a starting point,
which should not be underestimated, the standard library
reduces complications from software dependencies. The
modules in the standard library can be relied upon to be
present; thus no need to test for their presence and alert
the user to install if necessary.

Some of the standard library modules used in the sim-
ulator include:

• collections - item collections

• itertools - iterating over groups of items

• math - mathematical functions

• warnings - issuing and suppressing warnings

• os.path - path/file-name manipulation

• datetime, time, calendar - dates and times

• ConfigParser - configuration file parsing

• optparse - command-line option parsing

• logging - controlling output

• ctypes - calling into dll/.so libraries

In this work, we examine specifically the use of stan-
dard library modules for: command line parsing (opt-
parse), configuration files (ConfigParser), and message
logging (logging).

3.1 Configuration Files
One of the most significant upgrades required to improve
the program’s usability was to improve the configuration
file format. An example from the original format is given
below:

NumSweeps 1
Sweep1NumAz 2
Sweep1AzAngle1 200
Sweep1AzAngle2 345
Sweep1NumEl 1
Sweep1ElAngle1 0.5
Sweep1PRT 0.00098667
Sweep1PulseLength 0.00000157
Sweep1RotationRate 19.2261
Sweep1NumPulses 52
Sweep1GateLength 250

Old Configuration Format

While the format is not too difficult to understand at
first glance, it is somewhat deceptive. Each line is made
up of a string with a value. While the string indicates to
the user what the value represents, these strings are not
recognized by the program at all–the lines were simply
read in a fixed order. Any accidental shuffling of the lines,
or adding new ones at the wrong location, would result
in cryptic error messages. This is a very unfriendly for-
mat for new users, and prone to errors when new files are
created. Additionally, it was impossible to have any com-
ments in the file to help explain values and units.

When porting to Python, the standard library’s Config-
Parser module was selected. [3] This module provides
simple and flexible parsing of configuration files. A sam-
ple of the new configuration file format is given below:

2

Scan is made up of a set of sweeps
[Sweep1]
#Degrees
AzAngles = 200, 345

#Degrees
ElAngles = 0.5

#Seconds
PRT = 0.00098667

seconds
PulseLength = 0.00000157

deg. per sec.
RotationRate = 19.2261

#pulses per radial
NumPulses = 52

meters
GateLength = 250

New Configuration Format

The new format is much more flexible, allowing for
comments as well as having no fixed order for the dif-
ferent entries. Additionally, the configuration file can be
broken into separate sections, which can be helpful to
organize the file as well as for the programmer to keep
the configuration compartmentalized. This helps users
by having a much more "human-readable" file. From a
programmer’s standpoint, the use of ConfigParser yields
much simpler and maintainable code. The actual parsing
of lines into keys and values is offloaded to the library,
so that one only needs to request certain parameters by
name. Also, the library supports parsing a flexible (i.e.
unknown) number of values as a single parameter, which
was not possible with the old format.

The end result of the conversion of the configuration
parsing code from plain C to using Python’s ConfigParser
module was a reduction of 600 lines of code (LOC). The
loss in code size represents a sure gain in code maintain-
ability (fewer lines gives fewer opportunities for bugs).
The code’s extensibility is improved as well since adding
support for new parameters is as simple as looking up the
new parameter name and having a sensible default if it is
not found. Unspecified parameters using a default would
have been exceedingly difficult, if not impossible, using
the old C-based code. All of these gains together repre-
sent a large gain in program usability.

3.2 Message Logging

A second change needed to improve the simulator’s us-
ability was to improve the messages displayed to the user.
As a large research code base under heavy development,
the original code displayed a great deal of output to the
console. Such messages would be distracting and/or con-
fusing to the user. The messages provided useful debug-
ging information, however, so simply removing the mes-
sages was undesirable. What was needed was a way to
turn on the messages when requested but have them off
by default.

Python provides the logging module in the standard li-
brary [4], which serves the purpose of logging messages.
The full framework provides a way of controlling mes-
sage formatting, messages at different levels (warn, er-
ror, debug, etc.), and sending individual messages to a
variety of end points (files, screen, email, etc.). Much
of the complete functionality was considered overkill for
this application. The only features used here were sep-
arate message levels (for controlling program verbosity)
and optionally sending messages to a file instead of the
terminal.

The inclusion of logging messages to a file allows the
user to easily collect a log of the debugging messages,
which could be submitted as feedback in the event of a
problem. This streamlines the process of trying to fix is-
sues that inevitably arise as code gets used more widely
under configurations that have not previously been tested.

The change in the code base to utilize logging were a
gain of 40 lines of Python code. Additionally, all print
statements in the C code became calls to logging functions
in Python. For such a small gain in the code base size,
useful features for controlling and saving messages were
gained, as well as putting more polish on the user-visible
face of the program.

3.3 Command Line Parsing

Besides the configuration file, the command line repre-
sents the only user interface with the simulator. While
the original command line interface worked fine for the
original feature set, new options were required to support
the logging module. Also, the original help screen rep-

3

resented essentially a text file embedded into the source.
Any changes to the interface required editing code in sep-
arate location to ensure that the documentation accurately
reflected actual program use.

While the Python standard library’s optparse module
did not motivate the port to Python, once the port was
underway, it was a clear choice for implementing com-
mand line parsing. optparse provides a clear advantage
in terms of creating code that can easily be extended to
support new options [5]. Each option is specified individ-
ually, giving:

• long and short command names

• optional default values

• a description of the command (for the program’s help
message)

• what the parser should do when the option is encoun-
tered, such as

– Store the subsequent string (such as a filename)

– Store true/false

– Increment a counter

– Run a function

From the descriptions of each individual option, the li-
brary generates a help screen for the program, which can
be displayed by invoking the program with the ’-h’ option
or any other case the programmer wishes.

A typical invocation of the program from the command
line, which looks like any typical Linux/UNIX program,
is:

radarsim -vvv -d -l run.log config/example.config

The code used to add an option looks like:

opt_parser.add_option("-d", "--detailed",
action="store_true", dest="detailed",
help="Use detailed logging messages.")

The use of this module increased the size of the code
base by 10 lines. (This does not include the old hard-
coded help page). This additional code added options for
the logging framework that were not available in the old
code, as well as provided a generated, UNIX-like help
screen. An example of the help screen is given below:

Usage: radarsim [options] configfiles

Options:
--version show program’s version number and exit
-h, --help show this help message and exit
-v, --verbose Produce more verbose messages. Specify more than once

for more messages.
-q, --quiet Make output messages more quiet. Specify more than

once for less output.
-d, --detailed Use detailed logging messages.
-l FILE, --log-output=FILE

Log output messages to FILE. Only error messages will
be displayed to the console.

-L, --log-only Used to specify that output only goes to logfile. Need
to also specify --log-output.

All of these changes required minimal development ef-
fort. It should be noted that as of Python’s 2.7 release, the
optparse library has been deprecated in favor of the arg-
parse module. This module provides a very similar inter-
face in many respects, but improves handling of required
arguments and default parameter values. [5]

4 NetCDF

In addition to the utility of the standard library, the syn-
tax and features of Python permit library developers to
create more expressive interfaces than would be possi-
ble in may other languages. Much of this stems from
Python’s dynamic nature and key language features. For
instance, Python includes mapping character strings to ar-
bitrary objects (a dictionary) as one of its core data struc-
tures; adding such support to user-created data structures
is very straightforward. That these mappings can contain
arbitrary objects and do not need to be homogeneous is
due to Python’s dynamic nature.

NetCDF is a specific example of such a library. The
available Python interfaces for creating NetCDF files are
vastly more simple than the reference C interface. Part
of the reason for simplicity is the availability of a de
facto standard array type for Python in the form of the
NumPy library. NumPy provides a mathematical array
type that handles memory allocation and provides array-
based mathematical operations [6]. The other reason for
the simplicity is again Python’s dynamic nature. As a self-
describing, flexible file format, the data types for differ-
ent fields in NetCDF files are not known a priori. Com-
bined with the need to know types when compiling, this
leads to the creation of large amount of code (functions,
data structures, etc.) to handle the possible cases. A dy-

4

namic language lends itself much more readily to n such a
flexible-typed file format, and this shows in the difference
in interfaces.

There exist many Python libraries for reading NetCDF
files:

• ScientificPython (Scientific.IO.NetCDF)

• PyNIO

• pupynere

• scipy.io.netcdf

• netcdf4-python

The interface for all of these libraries is nearly identical;
ScientificPython’s was the first and the others followed
the same interface since it proved simple to use. For this
project, Pupynere was selected as it is implemented purely
in Python [7], making it easy to install as a dependency;
there is no need to compile code or install the reference
C-based NetCDF library.

As an example of the verbosity in reading a NetCDF
file in C, see the listing below, which retrieves an array of
values corresponding to the "Temperature" variable:

int nc_file, var_id, ndims;
nc_open("Test_data.nc", NC_NOWRITE, &nc_file);

nc_inq_varid(nc_file, "Temperature", &var_id);
nc_inq_varndims(nc_file, var_id, &ndims);
int* dims = malloc(ndims * sizeof(int));
nc_inq_vardimid(nc_file, var_id, dims);

size_t dim_len, total_size = 1;
for(int i=0; i<ndims; ++i)
{

nc_inq_dimlen(nc_file, dims[i], &dim_len);
total_size *= dim_len;

}
float* var = malloc(total_size * sizeof(float));
nc_get_var_float(nc_file, var_id, var);

free(dims);
free(var);
nc_close(nc_file);

This stands in stark contrast to the equivalent Python code
using pupynere:

from pupynere import netcdf_file
nc = netcdf_file(’Test_data.nc’, ’r’)

temp_var = nc.variables(’Temperature’)

nc.close()

In the C version of the code, after looking up an ID using
the variable’s name, a lot of code is spent figuring out how
much memory to allocate to hold the array. All of this
work is hidden behind a single function call in Python.

Another interesting contrast between the two versions
is that to read a different data type (say Temperature
stored as integers), the C version would need to be up-
dated; the Python version would look identical to the ver-
sion above. In order to make a C version that would have
the same flexibility, many more lines of code would be
need to check types and to allocate a pointer of the appro-
priate type.

While part of Python’s advantage comes from the
NumPy library, it would be possible to write such a data
structure and interface functions in C (indeed, much of
the numpy library is in C). However, this would be bur-
densome on the developer compared with simply down-
loading and installing a package. Even if such a C-based
library existed, it still would not have the benefit of be-
ing integrated with the C NetCDF API like pupynere (and
others) integrate with NumPy.

It should be noted that these examples are rather simple,
as errors are not handled. However, this again works in
favor of Python. In C, the errors are handled by checking
return values of each function invocation, and appropriate
action taken if the error code is not 0. In Python, the task
is simpler since exception handling is available; at the end
of the appropriate code block, one must simply catch the
appropriate exception. This block can encompass many
API calls.

The impact of converting the NetCDF I/O code was a
drastic reduction in code volume: 800 lines of code were
removed by converting from C to Python. In addition,
extending the I/O code was made much simpler, which
encouraged some improvements to the metadata which
was output in the files. These metadata include the code
version, date and time of simulation, and random num-

5

ber generator seed (for later reproduction and testing of
results).

5 Porting and Wrapping existing
code

Several methods were considered for wrapping the low-
level C code which was to be kept:

• Python C-API

• Ctypes

• F2Py

• Cython

The Python C-API was discounted as being too low-level
and fragile, as well as time-consuming to develop and
get correct. F2Py’s C support was deemed insufficient
for the needs of this project, since its main focus was on
FORTRAN. Cython, (a fork of the Pyrex project), is a
tool to generate C code (utilizing Python’s C-API) from
a Python-like syntax. This has use both in optimizing
Python code as well as interfacing with external libraries.
At the time, the project was deemed too immature to be
relied upon; since that time the project has gone onto wide
success and is used by many scientific Python projects as
the method of choice for interfacing Python with com-
piled code. Ctypes was chosen as the mature solution,
having gained acceptance into Python’s standard library
as of version 2.5. [8]

Ctypes provides a way of opening a shared library (a
.so file on UNIX or a .dll on Windows) and obtaining ref-
erences to the individual functions contained within. To
pass the proper data structures to these functions, Ctypes
provides a set of classes that map to the various C data
types (pointers, int, float, etc.). These low level types
can be assembled into full C-style structures. Once a
reference to the desired function is obtained, one sets
the proper types for the function’s arguments as well as
its return value. The function is called by creating the
proper structures, filling them with information, and pass-
ing them to the function. This approach has the unique

property of having the entire interface to the compiled
code being maintained in Python. It should also be noted
that numpy arrays can be passed as pointers to the ap-
propriate data type using Ctypes. A simplified version of
some of the simulator’s Ctypes code is given below:

from ctypes import cdll, Structure, POINTER,
c_float, c_double, c_int

class RadarStatus(Structure):
fields = [(’time’,c_double),

(’az_pointing’,c_float),
(’cos_az’,c_float),
(’sin_az’,c_float),
(’el_pointing’,c_float),
(’cos_el’,c_float),
(’sin_el’,c_float),
(’cur_az_ind’,c_int),
(’cur_el_ind’,c_int)]

from ctypes import cdll
_rslib = cdll.LoadLibrary(’_librs.so’)

radar_scan = _rslib.RS_radar_scan
radar_scan.argtypes = [POINTER(RadarStatus)]
radar_scan.restype = c_int

6 Conclusion

The use of Python enabled the rapid development of the
additional required functionality; total development time
was approximately 1.5 months for a graduate student
working full-time. Through the use of Python’s standard
library, the required features were added without a large
increase in code size (and hence maintenance burden). In
fact, porting to Python, in terms of lines of code, actu-
ally reduced the size of the code base. The initial size of
the code was 5400 lines of C code. The final ported ver-
sion has 2000 lines of Python and 2900 lines of C (not
including the separate library for scattering calculations).
This port came with no measurable performance penalty;
while the new Python code is no doubt slower, the sec-
tions of the code responsible for the overwhelming ma-
jority of run time remains in C. This shows the utility of
being able to combine the two languages so that one can
benefit from their respective strengths.

Porting this software package to Python has demon-
strated that Python possesses many attributes that make
it easier for developing than in traditional, statically typed
languages. Python’s standard library offers many built-in

6

facilities that make accomplishing a task, like parsing a
configuration file, a rapid endeavor. Python’s 3rd-party
support for NetCDF files is a large improvement over the
support in C or FORTRAN. The ability to use Python’s
Ctypes library (or the 3rd party Cython package) to link
to existing code allows one to keep performance-critical
sections of the code in a language like C, while permit-
ting rapid development in Python for the rest. This al-
lows developers to use the best tools for the job at hand
and maximize their development time. For a scientist, this
means spending less time developing code and more time
applying it to research problems.

References
[1] The Python Standard Library,

http://docs.python.org/library/index.html

[2] May, Ryan M. and Biggerstaff, Michael I. and Xue,
Ming, 2007. A Doppler Radar Emulator with an Ap-
plication to the Detectability of Tornadic Signatures,
J. Atmos. Ocean. Tech., 12, 1973–1996.

[3] ConfigParser – Configuration file parser,
http://docs.python.org/library/configparser.html

[4] logging – Logging facility for Python,
http://docs.python.org/library/logging.html

[5] optparse – Parser for command line options,
http://docs.python.org/library/optparse.html

[6] NumPy Reference, http://docs.scipy.org/doc/numpy/reference/

[7] pupynere 1.0.13, http://pypi.python.org/pypi/pupynere/

[8] ctypes – A foreign function library for Python,
http://docs.python.org/library/ctypes.html

7

