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1. INTRODUCTION 
 

WSI Corporation (WSI) requested a 
comparative study of their United States Precision 
Lightning Network™ (USPLN™), co-owned by 
WSI and TOA Systems, Inc., with another lightning 
detection network.  The USPLN is a nationwide 
network that consists of over 100 sensors 
dispersed across the continental United States 
(CONUS).  With global expansion, the network is 
now a subset within the growing Global Lightning 
Network

®
 (GLN

®
).  The network was first 

developed by TOA Systems, Inc. and Weather 
Decision Technologies (WDT), Inc. as an 
alternative to the widely-recognized National 
Lightning Detection Network (NLDN).  After 
testing, the USPLN began operations in 2004.  In 
2007, WSI acquired the share of the network 
owned by WDT, Inc. and began the expansion 
project for the GLN in 2008.  At the present time, 
over 160 sensors cover the North American 
continent alone (Neilley and Bent 2009).  Figure 1 
displays the locations of the nine USPLN sensors 
covering the state of Florida, which is the primary 
location for this study. 

Previous evaluations of USPLN 
performance metrics have been limited to 
simulations and individual case study analyses.  A 
numerical simulation of the network was 
conducted by randomly distributing cloud-to-
ground (CG) strokes across the CONUS.  Using 
the USPLN sensor characteristics, the expected 
signal response and location procedures were 
processed as if they were real strokes.  Network 
simulation results produced average stroke 
detection efficiencies (DE) of over 95% across the 
majority of the CONUS.  A mean location error of 
less than 250 m was also determined through this 
network simulation (Neilley and Bent 2009).   Case 
studies involved examination of fixed tower 
locations.  During the summer of 2008, eight 
strokes were detected by the USPLN within a 
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600 m radius of a 549 m tall tower near Miami, FL.  
Assuming that all of these strokes struck the tower 
itself, the calculated mean location error of the 
eight strokes was 186 m (Neilley and Bent 2009).  
Outside of these simulation and case study 
analyses, a longer-term evaluation of USPLN 
performance had not been conducted.  This 
project attempts to partially achieve that goal. 
 

 
 
Figure 1. Locations of the nine USPLN sensors 
stationed in Florida. 
 
 A simple method to evaluate performance 
of a lightning detection network over an extended 
time period is to compare it with another lightning 
detection network with well-established 
performance metrics.  The additional network 
utilized in this study is the second generation of 
the Cloud-to-Ground Lightning Surveillance 
System (CGLSS-II).  CGLSS-II is a local NASA 
and Air Force detection network consisting of six 
sensors, displayed in Figure 2, surrounding the 
Kennedy Space Center and Cape Canaveral Air 
Force Station (KSC/CCAFS).  The network was 
renamed CGLSS-II after CGLSS-I received a 
processor upgrade in 2008, which allowed for 
CGLSS-II to resolve all stroke locations in real 
time, whereas CGLSS-I could only process 
flashes (Flinn et al. 2010).  The CGLSS-II network 
has been a certified system by the United States 
Air Force since 1989, and is utilized by the 



45th Weather Squadron (45 WS) for all lightning 
detection procedures at KSC/CCAFS (Boyd et al. 
2005).  These procedures include lightning 
advisory issuance, Lightning Launch Commit 
Criteria (LLCC) evaluation, and inspections to 
launch payloads for possible induced current 
damage by direct or nearby hits (Flinn et al. 2010; 
McNamara et al. 2010).  The importance of these 
safety procedures, combined with KSC/CCAFS 
being located in an area of high annual lightning 
flash density, require CGLSS-II to carry strong 
performance metrics (Huffines and Orville 1999).  
Continuous evaluations of network performance 
have determined a stroke DE of ~98% for CGLSS-
II, with most of the missed detections due to high 
current strokes that saturate the local network of 
sensors (Ward et al. 2008b).  Table 1 presents 
derived 95% confidence location accuracy metrics 
for CGLSS-II. Re-evaluations of location accuracy 
had to be conducted since a lightning strike 
destroyed sensor #2 (Melbourne) on 26 July 2009.  
Sensor #6 was re-located to the sensor #2 site 
and the new five-sensor configuration was 
established on 11 August 2009.  In addition to this 
change, vendor configuration software in CGLSS-
II was reset on 18 February 2010, which 
significantly improved the location accuracy.  
These strong performance metrics, combined with 
intense monitoring of the system by the 45 WS, 
strongly support its use as a valid comparison tool. 
 

 
 
Figure 2. Locations of the six CGLSS-II sensors 
and the selected study region (shaded) for this 
project.  Sensor #6 was not included in the study 
region since it was moved to replace sensor #2 
(modified from Lambert et al. 2005). 

Table 1. Derived 95% confidence CGLSS-II 
location accuracy metrics (Roeder 2010, personal 
communication). 

Dates 
95% Confidence 

CGLSS-II Location 
Accuracy 

Pre 26 July 2009 693 m 

11 August 2009 – 
17 February 2010 

981 m 

Post 18 February 
2010 

567 m 

 
 Table 2 presents some similarities and 
differences between the USPLN and CGLSS-II 
networks.  There are a couple key similarities that 
are pertinent to this study’s methodology.  First, 
both USPLN and CGLSS-II are stroke-based 
systems, meaning they can process locations for 
each individual stroke in a flash.  This is useful 
since direct comparisons can be made without any 
possible biases due to flash algorithms.  This is 
also quite different from many previous network 
comparisons, which have often been focused 
towards performance metrics for flashes.  Second, 
both networks utilize the GPS time-of-arrival 
technique as a means of locating strokes.  USPLN 
solely uses this technique, while CGLSS-II also 
occasionally utilizes magnetic direction finding 
when few sensors detect the stroke.  The GPS 
timing allows for strong synchronization between 
both networks, which allows for a simple stroke 
matching procedure which is discussed in Section 
2.4.  A key difference for the networks is the 
sensor baseline (the average distance between 
sensors).  The USPLN sensor baseline is clearly 
larger, but the baseline in Florida is actually 
smaller than what is seen across the CONUS.  
Therefore, some of the results in this study will 
need to be extrapolated since Florida is a well 
sampled region for the USPLN. 
 
2. DATA AND METHODOLOGY 
 
2.1. Data 
 
 The two main datasets collected were 
stroke data for the USPLN and CGLSS-II 
networks.  CGLSS-II stroke data were acquired 
from two sources.  First, data files were provided 
directly from the 45 WS for the period of 20 May 
2008 to 31 August 2010.  The files contained 
information for each stroke in a simple text format.  
CGLSS-II data were also extracted from the NASA 
Spaceport Weather Data Archives over the same 
period (NASA 2010).  This source was consulted 
to fill in any possible gaps in the first set of files.  A  



 
Table 2. Listing of comparable key attributes for the CGLSS-II and USPLN networks. 

Attribute CGLSS-II USPLN 

Network Scale Local International 

Sensor Baseline ~ 30 km ~ 250 km 

Techniques 
Magnetic Direction Finding 

Time of Arrival 
Time of Arrival 

GPS Technology Yes Yes 

Flash/Stroke Reports Stroke Stroke 

 
script was used to combine both files and 
effectively fill any gaps discovered in the files 
provided by the 45 WS.  USPLN stroke data were 
provided by WSI in archived and real-time formats.  
The archive data was provided for a period 
spanning from 30 May 2004 to 30 April 2010.  
Over the summer of 2010, additional real-time 
data was collected from WSI through 31 August 
2010.  The acquired USPLN data were in a 
comma separated value (CSV) format, which was 
chosen as the primary format of this project due to 
its ease of use with statistical and graphical 
programs. 
 A third source of lightning data was also 
used with several case study examinations in this 
project.  Data from the NASA/Air Force Four-
Dimensional Lightning Surveillance System 
(4DLSS) were collected for the selected case 
studies.  The 4DLSS is composed of the CGLSS-II 
and the second generation Lightning Detection 
and Ranging (LDAR-II) networks.  LDAR-II is 
utilized to detect the individual leaders of a 
lightning stroke, allowing for detection of intra-
cloud (IC) lightning.  LDAR-I was previously used 
by Ward et al. (2008a) to classify small negative 
peak current (Ip) strokes as CG or IC strokes.  In 
this study, LDAR-II is used to help classify USPLN 
strokes as IC or CG strokes.  The large file sizes 
involved with the use of LDAR-II limited its use to 
individual case studies. 
 WMO (2009) explains that radar imagery 
can also be a useful tool in diagnosing network 
performance from a location standpoint.  If strokes 
clearly lie well outside of a reflectivity echo 
associated with a convective cell, then they may 
be suspect.  For this study, Melbourne (KMLB) 
WSR-88D composite reflectivity images were 
collected for the selected case studies from the 
National Climatic Data Center Radar Archives 
(NCDC 2010).  Additional radar imagery support 
was provided by the CCAFS/KSC Warm-season 
Convective Wind Climatology database, which 
focuses on the KSC/CCAFS region (Plymouth 
State University 2010).  To display the imagery, 
the Integrated Data Viewer (IDV) software was 
utilized (Unidata 2010).  IDV was selected since 

one can simultaneously plot radar images and 
point data.  This was extremely useful since 
lightning data could easily be overlaid onto radar 
imagery for quick examination. 
 
2.2. Temporal and Spatial Restrictions 
 
 The processor upgrade to CGLSS-II in 
2008 limited the length of the period of study to 
2008 and beyond, since previous to 2008 CGLSS-
I was a flash-based system.  Since CGLSS-II 
stroke data were available beginning on 20 May 
2008, this was a logical choice to start the period 
of evaluation.  The end of the evaluation period 
was selected to be 30 June 2010.  While data 
were collected through 31 August 2010, 
inconsistencies in the USPLN data were 
discovered after 1 July 2010 and had to be flagged 
and not used for comparison.  Thus, the selected 
period of study spans approximately two years, 
and includes two full summer periods. 
 The selected time period was further 
divided into sub-periods based on abrupt changes 
to the CGLSS-II network structure.  Recall from 
Section 1 and Table 1 that the average 
performance of CGLSS-II changed when the 
network was reduced to five sensors and again 
when vendor configuration software was updated.  
Thus, three sub-periods were created based on 
these two key changes in the network.  Sub-period 
I begins on 20 May 2008 and ends on 25 July 
2009, one day before sensor #2 was damaged by 
lightning.  Sub-period II begins on 11 August 2009, 
when the new five-sensor configuration was 
brought online, and ends on 17 February 2010.  
Finally, sub-period III begins on 18 February 2010, 
when the vendor configuration software was 
updated, and ends on 30 June 2010. 
 A definitive region of study also had to be 
selected.  The locations of the CGLSS-II sensors 
were quite important in deciding this region.  
CGLSS-II performs best within the bounds of the 
network, which includes a significant portion of the 
KSC/CCAFS area.  Outside of the network, 
performance degrades as one travels away from 
the network of sensors.  With this in mind, it was 



decided that the region of study would be confined 
to the region bound by the five-sensor 
configuration present during sub-periods II and III.  
The area is shown graphically in Figure 2.  Sample 
size remained a relative non-issue due to the 
temporal scale of the project and the tendency for 
convection to form in this area due to mesoscale 
boundary interactions between the diurnal sea and 
river breezes (Ander et al. 2009). 
 
2.3. Data Flagging and Quality Controls 
 
 The USPLN and CGLSS-II stroke datasets 
were converted into similar CSV formats.  
Information on the reported stroke time, location, 
and Ip strength were retained.  During the 
conversion process, a number of quality controls 
and flags were implemented for the study.  First, 
for both datasets, any test strokes were removed.  
Each format contained an indicator variable for a 
test stroke, which made it simple to eliminate any 
test strokes.  Second, CGLSS-II strokes were only 
kept if their locations were within the region of 
interest defined in Figure 2.  Third, CGLSS-II 
strokes were removed if they were weak positive 
strokes with Ip between 0 and +10 kA.  Weak 
positive strokes have long been considered to be 
detected IC strokes (Roeder 2010, personal 
communication).  The threshold of 10 kA has been 
decreasing with improved sensor sensitivity, but 
was retained at 10 kA for this study since it 
provides high confidence that a significant portion 
of IC strokes have been filtered.  In contrast, weak 
negative strokes (Ip between -10 and 0 kA) were 
retained since previous studies have shown that 
CG strokes can have recorded Ip as low as -2 kA 
(Ward et al. 2008a).  It is important to note that the 
last two quality controls were not applied to 
USPLN data.  Restriction to the study region 
would bias the stroke matching procedure 
between the networks, particularly near the edges 
of the study region.  Filtering of low current strokes 
would make an assumption about USPLN Ip 
calculation, and would bias stroke DE results and 
remove a set of possibly misclassified data. 
 While abrupt CGLSS-II structural changes 
were used to define sub-periods, changes in the 
USPLN network structure have not been included 
to this point.  The fluid nature of USPLN expansion 
as part of the GLN and sensor outages made it 
difficult to define set sub-periods.  A listing of 
sensor outages lasting 2+ hours for the nine 
USPLN Florida sensors (displayed in Figure 1) 
was provided by WSI (Krajewski 2010, personal 
communication).  The outages were used to 
simply flag the stroke data from both networks with 

two variables.  The first was the number of Florida 
sensors offline, and the second was a code letter 
for the offline sensor location (e.g. if just the 
Clearwater sensor was down, the variables would 
be “1” and “C”).  These flags were useful for data 
stratification in the performance analyses. 
 
2.4. Stroke Correlation Procedure 
 
 With both stroke datasets converted and 
quality controlled, strokes that were detected by 
both networks had to be correlated, or matched.  
Previous studies indicated that GPS timing was 
very useful and allowed for a fairly simple 
correlation process.  Ward et al. (2008b) 
considered CGLSS-I and NLDN events correlated 
if the CGLSS-I event occurred within 2 ms after 
the NLDN event.  These were based on how each 
network determines the report time of each event.  
Gaffard et al. (2008) concluded that the time 
difference between correlated strokes from the 
ATDNet and Meteo-France networks was on the 
order of microseconds, with few producing 
differences higher than ±1 ms.  Both of those 
networks are stroke-detection networks with GPS 
timing, as are CGLSS-II and USPLN.  In addition, 
exploratory analysis for this study revealed that 
most matches occurred when the time difference 
was less than ±3 ms.  Therefore, using the 
exploratory analysis, previous study conclusions, 
and a conservative approach, USPLN strokes 
were first considered correlated with CGLSS-II 
strokes if the occurrence time difference was less 
than ±3 ms. 
 It was evident that several previous 
studies included a distance threshold as well.  
Previous research using photometry concluded 
that the distance between correlated stroke 
locations was typically less than 10 km 
(Thottappillil et al. 1992).  Additional studies have 
concluded a distance of 12 km (Flinn et al. 2010).  
The distance between the USPLN and CGLSS-II 
reported locations was already being calculated in 
the correlation procedure for use with the location 
accuracy analysis.  This was done using the Great 
Circle Distance Formula, provided by Lambert and 
Roeder (2008).  It was decided that stroke 
matches were only kept if the distance between 
the locations was less than 15 km.  This threshold 
agreed well with the conclusions from previous 
studies, and with exploratory analysis which 
revealed less than 2% of stroke matches with 
higher distances than 15 km. 
 Following the correlation procedure, two 
quality control checks were implemented.  First, 
repeated use of strokes for correlations needed to 



be filtered, so the match closest temporally or 
spatially (if the time difference was the same) was 
retained.  Second, manual filtering was conducted 
to simply check for any suspicious pairs that 
happened to pass the time and distance 
thresholds.  Additional variables were used (e.g. 
highly opposite Ip readings or opposite polarities) 
to determine if stroke pairs were suspicious.  The 
manual filtering was highly conservative, since 
proof such as video evidence was not available. 
 
2.5. Stroke Detection Efficiency 
 
2.5.1. CGLSS-II Peak Current Variation 
 
 The first performance metric often 
examined when evaluating lightning networks is 
DE.  Stroke DE was evaluated in this project since 
direct stroke to stroke comparisons could be 
made.  It has been well documented (Gaffard et al. 
2008; Ward et al. 2008b; WMO 2009) that network 
stroke DE varies as a function of Ip, with stroke DE 
often increasing as the peak current magnitude |Ip| 
increases.  CGLSS-II Ip calculations are derived 
from range-normalized signal strength, which 
means that strokes that produce less of a signal at 
the sensors receive lower |Ip| values (Flinn et al. 

2010). 
 The strength of the relationship between 
USPLN stroke DE and CGLSS-II |Ip| was first 
checked using logistic regression (LR).  LR uses a 
two-class binomial response based on one or 
multiple explanatory variables.  For each stroke, 
the response is detection (or no detection) by the 
USPLN and the explanatory variable is the 
CGLSS-II |Ip| parameter.  Files were created that 
contain these two variables along with the outage 
flag variables for all strokes in the dataset.  The 
statistical and graphics programming environment, 
R, was used to perform the LR analysis (R 
Development Core Team 2010).  A script was 
created that generated LR models for the dataset 
striated by the number of offline USPLN Florida 
sensors.  Therefore, one LR model was made for 
data when zero sensors were offline, another 
model when one sensor was offline, etc.  Manning 
(2007) explained that the deviance output from a 
LR model in R could be used to formulate a 
pseudo-coefficient of determination (r

2
).  There are 

a number of equations available for calculating a 
pseudo-r

2
, and the following was suggested: 

 

deviancenull

devianceresidual
r 12 , 

where the deviances are provided in the LR model 
output by R.  The pseudo-r

2
 was, and could be, 

interpreted similarly to a regular r
2
 calculated for 

linear regression.  Therefore, a higher pseudo-r
2
 

means a stronger relationship between USPLN 
stroke DE and CGLSS-II |Ip|. 
 LR models are rather difficult to visualize, 
so a method of discrete plotting along the lines of 
Ward et al. (2008b) was used to visualize any 
pattern in USPLN stroke DE by CGLSS-II |Ip|.  For 
each discrete plot, 2 kA |Ip| frequency bins that 
ranged from 0-50 kA were generated.  It was 
assumed that CGLSS-II stroke DE was nearly 
100% for all strokes with |Ip| below 50 kA, since it 
had been shown that most strokes missed by 
CGLSS-II were high current strokes greater than 
50 kA (Ward et al. 2008b).  For each |Ip| bin, the 
frequencies of CGLSS-II strokes and those 
detected by the USPLN were counted.  For 
example, if 200 strokes had |Ip| between 18-20 kA, 
and 75 of those strokes were detected by the 
USPLN, then the frequencies for that |Ip| bin were 
200 and 75, respectively.  In addition to the 
frequency plots, USPLN stroke DE curves as a 
function of |Ip| were generated by simply 
calculating the stroke DE for each |Ip| bin.  Error 
bars were also included in the DE curve by 
assuming a normalized binomial distribution, so 
the standard deviation was plotted using the 
following equation: 
 

CGLSS

DEDE )1( 
 , 

 
where DE is the stroke DE for the selected |Ip| bin 
and CGLSS is the frequency of CGLSS-II strokes 
for that same |Ip| bin. 
 It was expected that a similar relationship 
to those established in previous studies would be 
seen. The USPLN would excel at detecting higher 
current strokes with most of the missed detections 
occurring in the lower |Ip| bins, particularly below 
10 kA.  It was also expected that stroke DE would 
improve with time and decrease as the number of 
offline USPLN sensors increased.  An increase in 
time would be attributed to continued 
improvements with USPLN structure and software.  
A decrease with sensor outages would be due to 
an affected sensor baseline across Florida, 
leaving fewer sensors to detect strokes. 
 
2.5.2. Stroke Rate Variation 

 
In addition to the commonly-used Ip 

variation in stroke DE, variation based on spatial 



and temporal frequencies of strokes was also 
conducted.  In theory, it would make sense to 
believe that a network may perform better when 
few strokes are occurring versus when many 
strokes are occurring in the same area within a 
short amount of time. 

A grid within the study region was selected 
to determine CGLSS-II stroke rates (in strokes 
km

-2
 hr

-1
) during the period of study.  Each box in 

the 30-box grid (seen in Figure 3) was 0.5 degrees 
latitude by 0.5 degrees longitude, producing a box 
area of roughly 27 km

2
.  Data selected for this 

analysis occurred only when all USPLN Florida 
sensors were online.  This was done to filter out 
any possible bias due to sensor outages.  For 
each selected hour, the frequency of CGLSS-II 
strokes was tallied for each grid box.  CGLSS-II 
stroke rates were determined by simply dividing 
the tallies by the area of the grid box.  Data were 
then aggregated for like stroke rates in order to 
calculate stroke DE values.  For example, say a 
stroke rate of 5 strokes km

-2
 hr

-1
 occurs 3 times 

throughout the period of study.  A total of 67 
CGLSS-II strokes occur during this rate, with 43 
detected by the USPLN.  Therefore, the calculated 
stroke DE for a stroke rate of 5 strokes km

-2
 hr

-1
 

would be 43/67 or 0.642. 
 

 
 
Figure 3. Selected grid for computing hourly 
CGLSS-II stroke rates.  Each box is 0.5 degrees 
latitude by 0.5 degrees longitude, producing an 
area of ~ 27 km

2
. 

 
A simple scatter-plot was generated using 

the resultant CGLSS-II stroke rates and their 
respective USPLN stroke DE calculations.  It was 
expected that decrease in the USPLN stroke DE 
would be seen as the stroke rate increased.  
Therefore, as the amount of lightning activity 

increases temporally and spatially, the USPLN 
detection ability would decrease. 
 
2.6. USPLN Location Accuracy 
 
2.6.1. Location Error 
 
 The second often-viewed performance 
metric is location accuracy.  Specifically, this study 
evaluates the USPLN location error at 95% 
confidence.  Recall that Table 1 contains 95% 
confidence CGLSS-II location errors, which serve 
as a location accuracy metric for CGLSS-II.  It is 
possible, assuming independence between 
CGLSS-II and USPLN errors, to determine a 95% 
confidence USPLN location error using the 
CGLSS-II location accuracy metrics and the 
distance between matching stroke locations.  By 
assuming independence, the total error (distance 
between stroke locations) is the addition of 
perpendicular error vectors (the CGLSS-II and 
USPLN location errors).  The problem then 
becomes a simple application of the Pythagorean 
Theorem, and can be solved for the 95% 
confidence USPLN location error. 
 An R script was used to read in daily files 
of matching strokes, which were created from the 
correlation procedure.  For each stroke pair, the 
distance between locations and the correct 95% 
confidence CGLSS-II location error were used to 
determine the 95% confidence USPLN location 
error through the procedure described above.  The 
calculated location errors were striated into groups 
by the number of offline USPLN sensors in order 
to determine variation as the sensor baseline 
changes.  For each group, the median error was 
selected to represent average performance on that 
particular day.  The variance of the location errors 
was also calculated to represent variation in 
performance on that particular day.  A method of 
weighted-averaging was used to determine the 
average location error and variance for each sub-
period, assuming independence.  The following 
equations were applied: 
 

nnLEwLEwLEwLE  ...2211 , 

 

nn VARwVARwVARwVAR
2

2

2

21

2

1 ... , 

 
where LE was the daily USPLN location error, 
VAR was the variance, w was the selected weight, 
and the subscripts denoted different days.  The 
weights were simply the ratio of the number of 
correlated strokes on the selected day over the 



total number of correlated strokes during the sub-
period.  These weighted-average statistics were 
interpreted as the 95% confidence location 
accuracy and variation for the USPLN.  It was 
expected that the location accuracy would improve 
with time, and weaken when USPLN sensors were 
offline. 
 
2.6.2. Directional Error 
 
 Directional error was also examined to 
determine any biases for the USPLN within the 
region of study, and how these biases may 
change when selected USPLN sensors were 
offline.  During the correlation procedure, the 
orientation of the USPLN location with respect to 
the CGLSS-II location (in degrees) was 
determined.  A Perl script was used to create 
frequencies of correlated strokes using the 
calculated orientation for all strokes with distances 
greater than 3 km.  The 3 km distance threshold 
was chosen to eliminate noise at lower distances.  
The frequencies were then displayed on 
histograms, with a histogram made for each 
different sensor combination seen in the dataset.  
Directional biases were then determined if 
substantial peaks were seen in the histograms at 
specific orientations.  It was predicted that an east 
to northeast bias would be seen since the USPLN 
did not have a sensor located nearby on the 
eastern side of the study region. 
 
2.7. Case Studies 
 
 Two case study days were selected using 
additional criteria for more detailed analyses.  
First, the case studies had to occur when all 
USPLN Florida sensors were online.  Second, 
recent case studies were important, particularly in 
sub-periods II and III.  This places more emphasis 
on recent USPLN performance.  Third, at least 
500 strokes must be reported by CGLSS-II to 
allow for sufficient sample size.  Fourth, the case 
studies should span all levels of USPLN 
performance.  Therefore, one day was selected 
where USPLN performance was excellent, and the 
other was selected when USPLN performance 
was poor. 
 The locations of all CGLSS-II and USPLN 
strokes within the region of interest were plotted 
on a position graph to provide a visual estimation 
of the performance of each network.  Stroke DE 
and location accuracy metrics pertinent to each 
case study were also discussed to provide 

additional detail and possible hypotheses for poor 
performance.  Stroke DE was examined using the 
same discrete plot procedure as the overall 
analysis, while location accuracy was examined 
through the distribution of stroke distances 
between USPLN and CGLSS-II locations. 
 A specific subset of strokes that were 
researched in the case studies involved USPLN 
strokes within the study region that did not match 
CGLSS-II strokes.  These were referred to as 
uncorrelated strokes.  For each case study, 
4DLSS data were acquired and converted into a 
format similar to the CGLSS-II and USPLN 
formats.  An R script was used to generate time-
height cross sections and position plots of all 
CGLSS-II and 4DLSS data within ±0.5 s of the 
selected uncorrelated USPLN stroke.  Plots were 
generated for each uncorrelated stroke and 
visually inspected to classify the stroke based on 
characteristics seen in the 4DLSS and CGLSS-II 
patterns.  There were five possible categories for 
an uncorrelated stroke.  First, the time-height 
cross section could have depicted a sequence of 
4DLSS observations trailing from higher altitudes 
to the uncorrelated stroke location within a short 
amount of time.  If the position plot revealed that 
both sets of observations were close to each 
other, then the uncorrelated stroke was classified 
as a true CG stroke that was detected by the 
USPLN and missed by CGLSS-II (if a CGLSS-II 
observation was not recorded).  An example of a 
time-height and position plot of a true CG stroke is 
given in Figure 4.  Second, the uncorrelated stroke 
could have been an IC stroke, which would have 
been evidenced by 4DLSS points located 
temporally and spatially with the uncorrelated 
stroke, but at high altitudes only.  Two categories 
were created for this scenario.  If the USPLN was 
correct in classifying it as an IC stroke, the 
uncorrelated stroke was placed in this category.  
The USPLN was capable of detecting some IC 
lightning as well as CG lightning, and IC strokes 
were denoted if the Ip variable was set to 0 kA for 
the stroke.  An additional category was also 
created for misclassified IC strokes by the USPLN.  
Third, the uncorrelated stroke could be spatially or 
temporally separate from any 4DLSS or CGLSS-II 
activity.  These strokes were categorized as 
“phantom” strokes.  Fourth, an additional category 
of unclassified was also created if the 4DLSS and 
CGLSS-II data did not depict a clear category for 
the uncorrelated stroke examined.  This was 
required since 4DLSS did not always clearly 
distinguish IC and CG strokes.

 



 
  
Figure 4. Example a) time height plot and b) position plot for a CG stroke detected by the USPLN but 
missed by CGLSS-II.
 

KMLB WSR-88D composite reflectivity 
imagery was utilized to examine the location of the 
“phantom” strokes compared to thunderstorm 
echoes.  Considering these strokes were spatially 
or temporally separate from the 4DLSS data, there 
was reasonable cause to examine if they were 
also located well outside thunderstorm echo 
regions.  Examination of these strokes was 
conducted using IDV to overlay the “phantom” 
stroke location onto the correct volume scan 
image.  Some caution was applied when 
discussing these events since it is possible to 
generate CG lightning over portions of the 
thunderstorm anvil and outflow regions, where 
typical radar reflectivity values were small. 
 
3. RESULTS 
 
3.1. USPLN Sensor Outage Analyses 
 
 A quick analysis of USPLN sensor outage 
data was conducted to determine the number of 
striations required for the stroke DE and location 

accuracy analyses.  Outages of zero, one, or two 
USPLN Florida sensors were discovered during 
the period of study.  No outages were recorded for 
about 65% of the total CGLSS-II stroke dataset.  
One sensor outages occurred for about 30% of the 
dataset, and the final 5% of the data occurred 
during two sensor outages.  The most frequent 
sensor to be offline was the Clearwater sensor, 
which was out for about 26% of the dataset. 
 
3.2. USPLN Stroke Detection Efficiency 
 
3.2.1. Peak Current Variation Results 
 
 The results of the initial LR analysis 
revealed that there was some relationship 
between the CGLSS-II |Ip| and detection by the 
USPLN.  Three LR models were created after the 
data were striated into zero, one, and two-sensor 
outage datasets.  Each LR model indicated that 
the CGLSS-II |Ip| was a statistically significant 
predictor of detection, as evidence by z-test p-
values very close to zero and well below the 0.05 



threshold often used to establish statistical 
significance.  The resultant pseudo-r

2
 calculations 

for each model are displayed in Table 3.  With a 
range of 0.32-0.46, clearly more factors than 
CGLSS-II |Ip| were influencing whether detection 
by the USPLN occurs or not.  However, it was 
interesting to see that the pseudo-r

2
 changed very 

little between zero and one-sensor outages, yet 
increased dramatically when two-sensor outages 
occurred. 
 
Table 3. The resultant slopes, intercepts, and 
pseudo-r

2
 values for the logistic regression models 

created in the LR analysis. 

Model Slope Intercept Pseudo-r
2
 

Zero Offline 
Sensors 

0.2110 -3.4456 0.3217 

One Offline 
Sensor 

0.2289 -3.6473 0.3391 

Two Offline 
Sensors 

0.2092 -5.7092 0.4523 

 
 The discrete plot analyses visually 
revealed some of the relationship seen in the LR 
analyses.  Figures 5-7 display the frequencies of 
CGLSS-II strokes (red) and those detected by the 
USPLN (blue) for zero, one, and two-sensor 
outages, respectively.  A clear problem was 
discovered with detecting low current strokes, 
regardless of the sensor outages.  In particular, 
strokes with |Ip| less than 14 kA do not produce 
stroke DE higher than 50% for any of the three 
sensor outage classes.  It is hypothesized that the 
signal produced for lower current strokes may not 
be large enough to be detected by the USPLN 
sensors, which have a larger baseline than 
CGLSS-II.  For higher current strokes, the USPLN 
stroke DE quickly increases.  For zero sensor 
outages, the USPLN detected the majority of 
strokes with |Ip| greater than 20 kA.  Thus, the 
USPLN performs quite well in detecting the high 
current strokes, which perhaps may be more 
important to many customers. 

A similar finding to the LR analysis was 
also discovered when plotting the stroke DE 
curves, which are shown in Figure 8.  Note how 
the stroke DE curves for zero and one-sensor 
outages are almost identical for some |Ip| bins.  
The similar nature of these curves supports the 
finding of similar pseudo-r

2
 calculations for each 

dataset.  Thus, it seems that detection of strokes 
does not change when one Florida USPLN sensor 
is offline.  However, when two sensors are offline, 
note the drastic drop in detection for strokes with 
|Ip| below 36 kA.  Clearly the loss of an additional 

sensor hampers the ability of the USPLN.  These 
drastic changes in performance likely have to do 
with alterations to the USPLN sensor baseline, 
rather than the discrete number of sensor outages.  
One offline sensor does relatively little to 
significantly alter the sensor baseline in Florida, 
particularly when it is a sensor farther away from 
the study region (e.g. Clearwater).  However, two 
sensors offline can dramatically change the sensor 
baseline.  Thus, USPLN stroke DE performance is 
strongly impacted by the sensor baseline, and 
sensor outages should be considered when 
examining lightning data for a selected region. 

An additional stroke DE curve plot is 
presented to show the temporal improvement in 
USPLN detection through the sub-periods.  Figure 
9 indicates that the detection of lower current 
strokes during sub-period I was a clear problem.  
However, the detection of lower current strokes 
did improve for sub-periods II and III, particularly 
for strokes with |Ip| from 6-20 kA.  An increased 
number of active sensors, instrument precision, 
and software are likely causes for the temporal 
increase in detection performance. 
 
3.2.2. Stroke Rate Variation Results 
 
 The results of the CGLSS-II stroke rate 
analysis were quite interesting.  The range of 
stroke rates calculated for each individual grid box 
was 0.03-11.63 strokes km

-2
 hr

-1
.  Figure 10 

displays the resultant scatter-plot of calculated 
USPLN DE by CGLSS-II stroke rate, with a few 
large outliers removed.  Outliers were removed in 
order to better view any possible trends in the 
results.  A least-squares regression line was fit to 
the data, with subsequent equation and r

2
 value 

located in the upper-right corner of the plot.  
Clearly, a strong relationship was not discovered 
in this analysis.  The slope of the least-squares 
regression line was negative, which would suggest 
that there was some decrease in the USPLN 
stroke DE as the lightning activity increased.  
However, an r

2
 value of less than 0.01 indicated a 

lack of a linear relationship between the two 
variables.  Given the fairly random distribution of 
the observations in Figure 10, it seems that no 
clear relationship (e.g. exponential, logarithmic, 
etc.) could have been established between these 
two parameters.  Thus, the USPLN stroke DE did 
not seem to typically increase or decrease greatly 
as the CGLSS-II stroke rate increased.  Detection 
was similar regardless of whether many or few 
strokes were occurring over the region of study.



 
Figure 5. Distribution of CGLSS-II strokes by CGLSS-II |Ip| are indicated by the red bars.  The blue bars 
indicate the frequency of CGLSS-II strokes in each |Ip| bin that were also detected by the USPLN.  Stroke 
data for this plot occurred when all Florida USPLN sensors were online. 
 

 
Figure 6. Same as Figure 5, except for stroke data when one USPLN sensor was offline. 
 

 
Figure 7. Same as Figure 5, except for stroke data when two USPLN sensors were offline. 
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Figure 8. Derived stroke DE curves by CGLSS-II |Ip| with error bars representing one standard deviation.  
Data for this plot were striated by the number of offline USPLN Florida sensors. 
 

 
 
Figure 9. Derived stroke DE curves by CGLSS-II |Ip| with appropriate error bars.  Data for this plot were 
striated by sub-period and only occurred when all USPLN Florida Sensors were online. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

S
tr

o
k
e
 D

E

Ip Bin (kA)

USPLN Stroke Detection Efficiency by CGLSS-II Ip Magnitude
Striated by USPLN Sensor Outages

ZERO ONE TWO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

S
tr

o
k
e
 D

E

Ip Bin (kA)

USPLN Stroke Detection Efficiency by CGLSS-II Ip Magnitude 
Striated by Sub-period (Zero USPLN Sensor Outages)

Sub-period I Sub-period II Sub-period III



 
Figure 10. USPLN stroke DE versus CGLSS-II hourly stroke rate.  A linear least-squares regression 
function was included, with subsequent equation and r

2
 statistic displayed in the top right corner. 

 
3.3. USPLN Stroke Location Accuracy 
 
3.3.1. Location Error Results 
 
 Table 4 displays the weighted average 
95% confidence USPLN location accuracy metrics 
for each sub-period and class of USPLN sensor 
outages, while Table 5 displays the respective 
variances.  Recall that each metric is a weighted-
average of the median daily values and daily 
variances (see section 2.6.1.).  Note that similar 
patterns to what was seen in the Ip USPLN stroke 
DE analysis are also present here.  A dramatic 
improvement in performance through the sub-
periods is discovered when the network has no 
sensor outages for Florida.  The most recent 95% 
confidence location accuracy stands at 626 m, 
which rivals the metrics calculated for CGLSS-II.  
This is exceptional considering the expanded 
sensor baseline of the USPLN.  As seen before, 
note the lack of a significant decrease in 
performance when just one sensor is offline.  In 
fact, during sub-period II the average metric 
improves, however this is somewhat nullified by a 
larger variance.  This adds support to the fact that 
one offline sensor does little to change the 
baseline of the USPLN near the region of study.  
When two sensors are offline, the baseline is 

clearly affected and so are the performance 
metrics.  All two sensor outages occurred in sub-
periods I and III, and a performance decrease is 
evident with large increases in the average 95% 
confidence USPLN location accuracy metrics and 
variances. 
 
Table 4. USPLN 95% confidence location error 
results striated by sub-period and the number of 
offline USPLN Florida sensors.  Median values for 
each day were used for the weighted average 
calculations. 

Sensor 
Outages 

Sub-
Period I 

Sub-
Period II 

Sub-
Period III 

Zero 1.410 km 1.190 km 0.626 km 

One 1.475 km 0.844 km 0.891 km 

Two 1.727 km No Data 2.137 km 

 
Table 5. USPLN location error variance results 
striated by sub-period and the number of offline 
USPLN Florida sensors.  Variances for each day 
were used for the weighted variance calculations. 

Sensor 
Outages 

Sub-
Period I 

Sub-
Period II 

Sub-
Period III 

Zero 0.125 km 0.294 km 0.284 km 

One 0.164 km 1.024 km 0.291 km 

Two 0.890 km No Data 14.075 km 

y = -0.0097x + 0.4533
R² = 0.0065
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3.3.2. Directional Error Results 
 
 The results for the directional error 
analysis reveal two large biases, one expected 
and the other unexpected.  Figure 11 displays the 
histograms for each of the six prominent sensor 
outage combinations during the period of study.  
As expected, a clear northeast to east bias can be 
seen on all of the histograms.  This is likely 
attributed to the lack of a close USPLN sensor to 
the east of the study region.  The closest is 
located in the Bahamas, and is geographically 
south of the region as well.  This affected the 
network’s east-west line of sight over the study 
region, and little could be done to resolve this 
unless a sensor was placed to the east.  The 
northeast bias occasionally shifted towards the 
north or east depending on which USPLN sensors 
were offline, which changed the sensor geometry 
around the region.  An unexpected bias towards 
the southwest was also discovered in a number of 
histograms, but was most prominent when all 
Florida USPLN sensors are functioning.  A 
possible explanation could be the semi-linear 
arrangement of the Melbourne, Moore Haven, and 
Naples sensors to the southwest of the study 
region.  If these three sensors were primarily used 
in determining the location of a stroke, the error 
could have been subsequently greater since the 
time-of-arrival technique attempts to triangulate a 
region of possible solutions. 
 One should remember that the northeast 
and southwest biases discovered in this study 
apply to this region only.  Biases for other portions 
of the network would be different due to different 
sensor geometries.  However, the directional error 
study is still useful since it highlights the changes 
in directional biases when certain USPLN sensors 
were offline.  This adds more importance to 
checking the status of the sensors when 
examining lightning activity since it clearly affects 
both detection and location of strokes. 
 
3.4. Case Studies 
 
3.4.1. 5 September 2009 
 
 There were a few outlier cases in sub-
period II which prevented better average 
performance metrics for the USPLN.  One of these 
cases was 5 September 2009, which produced 
weaker stroke DE and location accuracy metrics 
than what were calculated for the majority of the 
days.  Figures 12a and 12b display the stroke 
locations for all CGLSS-II strokes and USPLN 
strokes within the region of study, respectively.  A 

clear eastward shift in the clusters of USPLN 
strokes can be seen compared to CGLSS-II.  In 
addition, the distribution of strokes across the 
study area was more spread out for the USPLN 
compared to CGLSS-II, which primarily had two 
main clusters of strokes.  An overall eastward bias 
was evident and it seemed to be fairly significant. 
 Figure 13 indicates that the USPLN had 
significant problems with detecting lower current 
strokes on 5 September 2009.  A stroke DE of 
50% is not consistently obtained until the |Ip| 
increases above 22 kA.  Stroke DE metrics above 
25% are not reached until the |Ip| increases above 
16 kA.  The stroke DE curve on this day (Figure 
14) in general falls well below the curve derived for 
sub-period II on Figure 9.  The location accuracy 
was also poor, as already evident in Figure 12b.  
The 95% confidence location accuracy for 5 
September 2009 was found to be 3.770 km, well 
above the average 1.190 km for the entire sub-
period.  Figure 15 displays the distribution of 
distances between locations of matching USPLN 
and CGLSS-II strokes.  A clear bimodal 
distribution is evident with peaks averaging near 
1.5 and 5.5 km.  This second peak at higher 
distances appears to be the culprit for the poor 
location accuracy, but no explanation appears 
feasible for why this occurred. 

There were only 73 USPLN strokes within 
the study region that remained unmatched with 
CGLSS-II strokes.  Table 6 shows the results of 
the 4DLSS identification analysis.  There were 11 
strokes identified as CG strokes missed by 
CGLSS-II.  CGLSS-II detected 963 strokes on this 
day within the study region.  Assuming all 963 
were true CG strokes, then CGLSS-II missed only 
1.1% of all CG strokes on this day, well within the 
~2% concluded by Ward et al. (2008b).  As 
expected, the majority of uncorrelated USPLN 
strokes were actually IC strokes.  There were 
seven classified as “phantom” strokes, with a few 
of these having zero 4DLSS observations within 
±0.5 s of the recorded USPLN event time. 
 The radar analysis of the seven “phantom” 
strokes revealed that two occurred well outside the 
region encompassed by a convective cell.  Figure 
16 displays one of these two strokes, which was 
reported just southwest of Port Canaveral, FL 
while the closest storm cell was located northeast 
of KSC/CCAFS.  These two strokes are deemed 
suspicious due to their lack of agreement with the 
radar imagery and the 4DLSS dataset.  The other 
five “phantom” strokes were located within or near 
a storm cell, so the results for those strokes were 
inconclusive. 



 
 
Figure 11. USPLN directional error histograms for each of the prominent sensor outage combinations.  
The x-axis refers to the orientation of the USPLN stroke location with respect to the CGLSS-II stroke 
location.  Only matching stroke pairs with distances greater than 3 km were used in this analysis. 
 

 
 
Figure 12. a) CGLSS-II stroke position plot and b) USPLN stroke position plot for 9 September 2009. 



 
Figure 13. Same as Figure 5, except with stroke data from 9 September 2009. 
 

 
Figure 14. Derived USPLN stroke DE curve with error bars representing one standard deviation.  Data for 
this figure are displayed in Figure 13. 
 

 
Figure 15. Distribution of distances between matching strokes for 5 September 2009.  A cumulative 
distribution function was also included, with a secondary axis located on the right of the plot. 
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Table 6. Results of the 4DLSS analysis for uncorrelated USPLN strokes on 5 September 2009. 

Category Frequency Percentage 

CG stroke 11 15.07% 

USPLN correctly classified IC stroke 6 8.22% 

USPLN incorrectly classified IC stroke 40 54.79% 

“Phantom” stroke 7 9.59% 

Unclassified stroke 9 12.33% 

Total unmatched USPLN strokes 73 100.00% 

 

 
 
Figure 16. KMLB composite reflectivity image of a “phantom” stroke (white crosshairs outlined by a 
yellow circle) that occurred on 5 September 2009. 
 
3.4.2. 15 June 2010 
 
 The second case study examined had 
much better performance metrics compared to 5 
September 2009.  Figures 17a and 17b indicate 
that both networks had similar locations of stroke 
clusters associated with individual storm cells, with 
the USPLN containing a few more stray strokes 
outside of the main clusters.  The density of stroke 
locations also appears similar between the two 
networks, whereas a clear decrease in the number 
of strokes for the USPLN could be seen on 5 
September 2009. 
 Figures 18 and 19 show that the stroke 
DE for 15 June 2010 was much better than the 
average DE for sub-period III.  A stroke DE of 50% 
is already achieved for |Ip| higher than 8 kA.  A 
stroke DE of 90% is obtained at |Ip| higher than 16 
kA.  Considering that 15 June 2010 occurred near 
the end of the evaluated study period, this is an 
excellent sign for USPLN performance and a clear 
improvement.  The location accuracy was also 
excellent, with a 95% confidence location 

accuracy metric of 576 m.  The distribution of 
stroke distances in Figure 20 displays a clear peak 
between 200-600 m, with no secondary peak 
noted. 
 There were 348 USPLN strokes that were 
uncorrelated within the study region.  The 4DLSS 
identification analysis results are displayed in 
Table 7.  There were 42 strokes identified as CG 
strokes missed by CGLSS-II.  There were 869 
strokes detected by CGLSS-II on 15 June 2010, 
so CGLSS-II missed 4.6% of CG strokes on this 
day.  This percentage was much higher than what 
was discovered on 5 September 2009 and what 
Ward et al. (2008b) concluded.  Most of the 
uncorrelated strokes were still classified as IC 
strokes.  There were five “phantom” strokes, but 
they did contain some 4DLSS observations on 
their respective time-height and position plots.  
Examination of these strokes with radar imagery 
revealed that all five strokes were located in or 
around a thunderstorm echo.  Figure 21 depicts 
one of the “phantom” strokes from 15 June 2010. 

 



 
 
Figure 17. a) CGLSS-II stroke position plot and b) USPLN stroke position plot for 15 June 2010. 
 

 
Figure 18. Same as Figure 5, except with stroke data from 15 June 2010. 
 

 
Figure 19. Derived USPLN stroke DE curve with error bars representing one standard deviation.  Data for 
this figure are displayed in Figure 18. 
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Figure 20. Distribution of distances between matching strokes for 15 June 2010. 
 
Table 7. Results of the 4DLSS analysis for uncorrelated USPLN strokes on 15 June 2010. 

Category Frequency Percentage 

CG stroke 42 12.07% 

USPLN correctly classified IC stroke 56 16.09% 

USPLN incorrectly classified IC stroke 192 55.17% 

“Phantom” stroke 5 1.44% 

Unclassified stroke 53 15.23% 

Total unmatched USPLN strokes 348 100.00% 

 
 

 
 
Figure 21. KMLB composite reflectivity image of a 
“phantom” stroke (white crosshairs outlined by a 
yellow circle) that occurred on 15 June 2010. 
 

4. CONCLUSIONS AND DISCUSSION 
 
 It is clear that this study revealed several 
strengths and weaknesses for USPLN 
performance that were not discovered in the 
network simulation and fixed tower analyses.  A 
clear improvement in performance was seen 
during the period of study.  Stroke DE increased 
significantly for lower current strokes from sub-
period I to sub-period II, with similar detection 
seen in sub-period III.  Location accuracy also 
significantly improved with time, especially in sub-
period III where a 95% confidence location 
accuracy of 626 m was calculated.  The improved 
performance can likely be attributed to improved 
software upgrades in the system and the addition 
of sensors for the expanding GLN. 
 The stroke DE analyses revealed some 
relationship between CGLSS-II |Ip| and detection 
by the USPLN.  Weaker current strokes were the 
source for most of the missed detections by the 
USPLN, particularly those with |Ip| below 10 kA.  
Detection for strokes with |Ip| above 20 kA was 
excellent when the USPLN was operating with all 
Florida sensors online.  Thus, it is difficult to use 
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one simple number to describe the detection 
performance of the USPLN.  The correct 
performance metric to use may be heavily 
dependent on the needs of a customer.  For 
example, if a customer is only concerned with 
stronger strokes, then a stroke DE should be 
calculated for only stronger current strokes.  
Based on the findings of this study, the stroke DE 
would be quite high for strong strokes.  However, if 
weaker current strokes are also important, then 
the stroke DE would be much lower based on the 
findings in this study. 
 Both the stroke DE and location accuracy 
analyses indicated the importance of having a 
sufficient sensor baseline for optimal performance.  
Significant drops in the USPLN performance 
metrics were not seen when one USPLN sensor 
was offline, but were seen when two USPLN 
sensors were lost.  The sensor baseline was 
greatly affected when two sensors were offline, 
especially considering the majority of two sensor 
outages included the Clearwater and Orlando 
sensors.  This study also revealed that directional 
biases can be introduced based on the sensor 
geometry.  Thus, outages of sensors nearby to an 
area of examination should be considered since a 
decrease in performance does occur when the 
sensor baseline is affected. 
 Analyses of unmatched USPLN strokes 
for the case studies using 4DLSS determined that 
a significant portion of these uncorrelated strokes 
were IC strokes classified as CG strokes by the 
USPLN.  There were some CG strokes that 
USPLN detected and CGLSS-II missed, which are 
likely high current strokes that saturated the 
CGLSS-II network.  CGLSS-II missed 1-5% of all 
CG strokes for the two case studies, which was 
fairly consistent with the ~2% determined by Ward 
et al. (2008b).  A few “phantom” USPLN strokes 
were determined, but analysis with the radar 
imagery did little to justify if they really were 
spurious strokes. 
 It should be noted that in early December 
2010 it was discovered through video confirmation 
of a lightning event that some of the CGLSS-II 
sensors required changes in configuration, which 
took place on 9 December 2010.  This problem 
has been traced back to late June 2010.  While 
this one event showcased a weakness in CGLSS-
II performance, other known and evaluated events 
did take place during the period of study where 
CGLSS-II still retained excellent performance.  
Thus, it is not totally clear as to how this 
discovered problem may have slightly affected the 
results of this project.  However, the data used in 
this study only extended to 30 June 2010 and 

there was very little lightning activity in the study 
region during the latter part of June. 
 It is also important to note that all of the 
performance metrics calculated in this study are 
likely higher than what may be determined for 
other portions of the network.  This is due to the 
increased USPLN sensor baseline across Florida 
compared to other regions of the CONUS.  Thus, 
extrapolation of these results should be done if 
applying these metrics to other portions of the 
network, particularly in those regions where the 
spacing between sensors is greater. 
 
5. FUTURE WORK 
 
 This study simply scratches the surface of 
what could be done when comparing the USPLN 
or any other lightning networks to each other.  This 
study was the first to evaluate USPLN 
performance over a long-term period, so additional 
studies and comparisons should be conducted.  
Additional case studies comparing 4DLSS to the 
USPLN should be done to further expand the 
results discovered in the 4DLSS analyses in this 
study.  Comparisons to other local detection 
networks in different regions of the country could 
be done to determine how performance may vary 
over other regions.  Of course, a nationwide 
comparison could be done using another large-
scale detection network, such as the NLDN.  
Location accuracy and stroke DE could be 
conducted in a similar manner to this study, using 
known and tested performance metrics from the 
comparative network. 
 More investigation should be done 
involving the lack of detection of lower current 
strokes by the USPLN.  It is likely that a 
percentage of these lower current strokes 
detected by CGLSS-II are actually IC strokes, but 
determining what that percentage is and which 
ones are difficult matters.  For this study, a 
conservative approach was taken by only 
eliminating weak positive current strokes, while 
retaining all weak negative strokes.  The 
magnitude of the 4DLSS dataset limited its use to 
the case studies, so for a short-term study, 4DLSS 
could be used to help eliminate some of these IC 
strokes.  However, 4DLSS is not full-proof either, 
as evidenced in the case studies where some of 
the USPLN strokes could not be classified.  CG 
strokes that occur in pre-existing channels are 
also an issue.  It would be interesting to compare 
performance metrics (particularly stroke DE) for 
sub-period III using an additional CGLSS-II 
dataset where strokes were eliminated based on 
classification using 4DLSS to see if the lack of 



detection was overdone due to additional IC 
strokes in the dataset. 
 Analysis of peak current accuracy for the 
USPLN could also be done in the future.  Peak 
current accuracy is often used as a third 
performance metric, but its importance is heavily 
dependent on the customer.  This study was 
focused on detection and location, since most 
customers are primarily concerned about where 
and when strokes hit.  However, peak current 
analyses could also be included for future studies. 
 Perhaps the biggest push for an additional 
analysis will occur once both networks are 
upgraded.  At the present time, new sensors for 
the USPLN are being tested by TOA Systems, Inc. 
for future implementation.  CGLSS-II is also 
working towards eventually getting new sensors 
and re-establishing the six-sensor configuration 
that was previously in place.  Once these are 
finished, a new analysis could be done to 
determine if performance has increased due to the 
new sensors. 
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