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1. OVERVIEW 
 
 The objective of this experiment is to 
improve the bias correction in a soil moisture data 
assimilation scheme used in a land surface model, 
based on the vegetation/land use type. Ultimately, 
this would result in improved simulations of soil 
moisture and temperature, and consequently 
boundary layer states and processes.  The 
existing bias correction uses a Cumulative 
Distribution Function (CDF)-matching technique to 
adjust a remotely-sensed soil moisture estimate 
(‘observation’) to a model (‘background’) value 
with the same frequency of occurrence.  We test a 
new bias correction scheme which allows for 
separate CDF adjustments for each land use type.  
Using the new scheme changes the geographic 
distribution of modeled soil moisture.  Future work 
will quantify the impact of this change. 
 
2.  BACKGROUND 
 
2.1  SHEELS 
 
 SHEELS (Simulator for Hydrology and 
Energy Exchange at the Land Surface) is a 
distributed land surface hydrology model (Martinez 
et al. 2001, Crosson et al. 2002) with a heritage in 
the 1980’s Biosphere-Atmosphere Transfer 
Scheme (BATS) (Dickeinson et al. 1986). It can be 
run off-line or coupled with a meteorological 
model.  SHEELS has a flexible vertical layer 
configuration designed to facilitate microwave data 
assimilation and it contains a radiative transfer 
model for microwave applications.  
 
2.2 Land Information System (LIS) 
 
  We have integrated SHEELS into the 
Land Information System (Kumar et al., 2006), a 
software framework for running land surface 
models and it is currently being transitioned to the 
public release of LIS.  LIS is highly customizable 
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at run-time, facilitating modeling experiments and 
intercomparisons.  Its modular structure allows 
users to specify their choice of land surface model, 
base and supplemental forcing, and parameters 
including land cover, soil type, greenness fraction, 
and topography.  LIS can be run coupled with the 
WRF meteorological model and includes a data 
assimilation capability via an Ensemble Kalman 
Filter.  We are using LIS version 5.0.  Input data 
sets include North American Land Data 
Assimilation System (NLDAS) forcing data and 
precipitation from Stage IV. 
 
2.3 AMSR-E Soil Moisture 
 
 We assimilate soil moisture observations 
from the Advanced Microwave Sounding 
Radiometer for the Earth Observing System 
(AMSR-E) (Njoku et al. 2007).  The AMSR-E is a 
conically scanning passive microwave radiometer 
that measures brightness temperatures at 6 
frequencies from 6.9 to 89.0 GHz.  Horizontally 
and vertically polarized radiation are measured 
separately at each frequency.  It flies on the NASA 
Aqua satellite in a polar orbit at an altitude of 705 
km.  
 We use the Level 2 retrieved soil moisture 
product (Njoku et al. 2003) generated from level 
2A AMSR-E brightness temperatures spatially 
resampled to a nominal 25-km equal area Earth 
grid. .  Due to extensive radio frequency 
interference in the 6.9 GHZ channel, 10.7 and 
18.7 GHz observations are used for soil moisture 
estimation.  
 
2.4  Ensemble Kalman Filter Data Assimilation 
 
 The AMSR-E soil moisture observations 
are assimilated using an Ensemble Kalman Filter 
(EnKF) within LIS.   Kalman filtering is a data 
assimilation method that combines a forecast 
(background) with observations to generate an 
improved estimate of a model variable.  A Kalman 
Filter calculates an optimal weighting between the 
background and the observation.  The EnKF uses 
the spread of the ensemble to represent the 
forecast error covariance. We used an 8-member 



ensemble generated using perturbations of 3 
forcing variables (incident longwave and 
shortwave radiation, and rainfall), 14 state 
variables (14 soil moisture layers), and one 
observation variable (AMSR-E soil moisture). 
 
3.  BIAS CORRECTION 
 
 Soil moisture observations and models 
have distributions that differ significantly in both 
mean and variance.  Biases in land surface 
modeling are often on the order of the dynamic 
range of the measurement signal (Reichle and 
Koster 2004).  In assimilating AMSR-E soil 
moisture estimates, we have observed dry biases 
and a small dynamic range in the observations 
(Blankenship et al. 2010).   

It is prudent to scale the observed 
distribution of soil moisture to match the model 
climatology, thereby converting the satellite 
observations into model-equivalent values (Eyre 
1992). Bias Correction methods are used routinely 
in operations at many NWP centers to correct 
temperature and moisture sounding satellite 
radiances (Auligne et al. 2007). 
 Bias correction is distinct from the forward 
operator, which converts the background field into 
appropriate units.  The bias correction removes 
systematic error in either the observations or the 
model. 
 
3.1  CDF Matching 
 
 We used the LIS capability to conduct 
CDF matching (Kumar et al. 2009).  In this 
method, observations are converted into 
equivalent model value occurring with the same 
frequency.  CDF Matching techniques are also 
used by Reichle and Koster (2004) and Reichle et 
al. (2007) 
 
3.2  Experiment Design 
 

We ran three simulations as follows:   
Run 1) No Data Assimilation  
Run 2) Uniform CDF simulation: Compute and 
apply single CDF correction for all points 
Run 3) Land Use CDF simulations:  Compute and 
apply CDF corrections independently for each 
land-use type.  Figure 1 shows a map of land use 
types with the dominant types labeled.  The 
classification comes from the 14-type University of 
Maryland land use database (Hansen et al. 2000).  

 
Figure 1.  Land cover classes used in SHEELS 
land surface model. 
 
 The CDF corrections for experiments 2 
and 3 were derived from a summertime monitoring 
run (soil moisture estimates read in but not 
assimilated) for this domain, based on CDFs of 
both observation (the AMSR soil moisture 
estimate) and background values.   Figure 2 
shows the correction curves for the uniform 
correction as well as for the dominant land use 
types.  For observed soil moisture of about 0.2 or 
less, woodlands has the lowest corrected value, 
while at higher observation values, grassland has 
a lower corrected value.  
 

 
 
Figure 2.  CDF-based corrections applied in 
Uniform and Land use-dependent simulations.  
Soil moisture units are cm3/cm3. 
 



3.3  Results 
 
a) 

 
b)

 
 
a.  Impact of data assimilation 
 
 Figure 3a (no DA) indicates a wide range 
of soil moisture resulting from highly variable 
antecedent precipitation.  Assimilation of AMSR-E 
data over the eastern half of the domain results in 
significant drying, particularly in Texas and eastern 

 
 
c) 

 
Figure 3.  a) Top layer soil moisture (cm3/cm3) at 7 
Jun 2003 08:00 UTC for control run, b) Top layer 
soil moisture at same time for uniform correction 
run, c) 1-hr increment in soil moisture for the 
uniform correction run. 
 
Kansas, as shown in Figures 3b and 3c.  (Results 
from Run 3 are not shown here; the effect of the 
different bias correction scheme is small relative to 
the effect of the bias correction itself.)  The 1-hr (7-
8 UTC) soil moisture increment in Figure 3c is 
largely due to DA, but also includes minor 
changes due to physical processes. 
 
b.  Impact of Land Use CDF Correction 
 
The spatial pattern in Figure 4 reflects the land 
use type distribution in Figure 1.  The area of 
forest in the southeastern part of the domain 
stands out from the surrounding grassland.  This 
illustrates that the land-use CDF correction does 
affect results from soil moisture data assimilation.  
The next step is to determine whether the 
modeled values are improved by the changes. 
 
4.  FUTURE RESEARCH 
  
 We plan to combine similar land use types 
(e.g. all forest classes) based on physical 
properties and similarity of CDFs.  We will also 
test separate CDF corrections for day and night  



 

 
Figure 4. Difference in fractional soil moisture 
immediately following assimilation of AMSR-E 
data at 8 UTC on June 7, 2003: Land Use CDF 
minus Uniform CDF simulation. 
 
AMSR-E overpasses. 
 The impact of the land-use dependent 
CDF correction vis-à-vis uniform CDF correction 
will be quantified over a multi-year time period by 
validating anomaly correlations against in situ 
measurements at sites including Little  
Washita Micronet in Oklahoma.  We will then 
evaluate the impact of the new bias correction 
methodology on forecasting boundary layer states 
(temperature, humidity, wind) and surface fluxes in 
a coupled meteorology/land surface model. 
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