
J2.5 ADDRESSING WIND DIRECTION UNCERTAINTY IN SOURCE ESTIMATION
THROUGH DYNAMIC TIME WARPING

G. Cervone∗1 J. Lin2 P. Franzese3

1Dept. of Geography and Geoinformation Science, George Mason University
2Dept. of Computer Science, George Mason University

3Center for Earth Observing and Space Research, George Mason University

1. Introduction

Detecting the source of a pollutant release in the atmosphere,
and identifying its characteristics, is an important problem due
to the necessity to locate the source in order to take action
or to correctly assess the potential damages caused by the
release. The problem can be summarized as follows. Given
a few measurements of pollutant concentrations and some
basic meteorological information, the goal is to identify the
characteristics of the release such as location, emission mass
rate, temporal evolution, in order to be able to predict the fate
of the contaminants [12, 5].

Source detection algorithms can be based on backward
or forward simulation techniques. Backward techniques
use reverse transport and dispersion simulations from the
receptor to the source. Forward techniques use transport
and dispersion simulations from different candidate sources,
and compare the resulting concentrations to the available
measurements. The algorithms search the characteristics of
the source that minimizes the error between simulated and
measured concentrations. An appealing characteristic of the
forward techniques is that they do not require modifications to
the dispersion model. Therefore, they can be used with any
available dispersion model, independent of the complexity of
the problem. We will apply a forward simulation technique.

Several forward iterative methods for source estimation
have been developed [9, 14, 17, 8, 5]. In particular,
evolutionary or genetic algorithms were employed to drive a
search process based on forward numerical simulations, and it
was shown that source characteristics were correctly identified
for synthetic cases and for a controlled field experiment [4, 6].

Different measures of the error between the simulated
and observed values were investigated to quantify the
performance of the new candidate solutions. The error
function is the only feedback that the algorithm receives on the
quality of the newly generated solutions. It is usually referred
to as error or fitness function, and its value is also called the
skill score.

The correct wind direction is paramount to source
estimation problems. It was observed that errors in wind
direction of only a few degrees drastically worsen the source
estimation. Even when the wind direction is carefully
measured at the time of the release, as for example in a field
experiment, the wind variability over the time of the release
can be very large leading to large uncertainty and noise in the
data.
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To address this problem, previous research investigated
two different approaches. The first method consisted in
choosing an error function that compares the simulated and
observed values without taking into account their spatial
distribution. In general the method performed poorly because
the spatial location of the concentration plays a crucial role in
correctly identifying the characteristics of the source. A second
approach consisted in making the wind direction an unknown
in the source estimation problem. This method generated
good results, at the cost of increasing the complexity of the
search process.

This paper introduces a third approach, namely the
use of Dynamic Time Warping (DTW) [18, 28] to compute
the error between simulated and observed concentrations.
DTW is a distance measure that is commonly used in time
series databases and mining [19, 26, 27, 28, 29] and signal
processing communities [30, 32, 33, 31]. DTW uses dynamic
programming techniques to determine the best alignment that
minimizes the distance/cost/error between sequences. Its
ability to produce nonlinear alignment between sequences
makes it shift-invariant, and addresses the problem of errors
in wind direction.

Since its introduction by Bellman in 1959 [18], DTW has
been used extensively in the speech processing community
[30, 32, 33, 31]. In 1994, Berndt and Clifford introduced DTW
as a time series similarity measure to the database community
[19, 28]. Due to its ability to minimize the effects of shifting on
the time axis, DTW has been widely used in diverse fields.
For example, Kuzmanic and Zanchi used DTW for hand shape
(sign language) classification [20]; Corradini used DTW to
recognize gestures and human activities [21]; Keogh et al.
adapted DTW for various time series data mining tasks such
as classification, clustering, and similarity search, on various
applications such as motion capture matching and shape
matching [34, 28, 29]; Niennattrakul and Ratanamahatana
adapted DTW for k-means clustering for multimedia time
series data [22]; Muller et al. proposed a multiscale DTW for
music synchronization [23]; Aach and Church applied DTW
on RNA and protein expression data [24]; and Zhang et al.
compared DTW to other similarity measures for surveillance
trajectory clustering [25]. While DTW is a robust similarity
measure that outperforms many existing approaches, it is
also computationally intensive. To mitigate this issue, several
techniques for indexing DTW have been proposed [26, 27, 28].
In fact, Ratanamahatana and Keogh show that with indexing,
DTW can be achieved in linear time when searching large
databases [29].

This paper is structured as following: Section 2 discusses
the methodology, including the different error measures used



and the numerical simulation performed; Section 3 describes
the experiments performed and their results; Section 4
discusses the findings and suggests applications for the
proposed method.

2. Methodology

2.1 Transport and Dispersion Simulations

The dispersion simulations are performed using a Gaussian
reflected dispersion model, which determines the predicted
mean concentration cs at a location x , y and z of an
atmospheric tracer released from a source located at xs, ys,
and zs:
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where Q is the source mass emission rate, U is the wind
speed, σy (x , xs;ψ) and σz (x , xs;ψ) are the crosswind and
vertical dispersion coefficients (i.e. the plume spreads) where
ψ describes the atmospheric stability class (i.e., ψ = A to
ψ = F ), and σ2

s = σ2
y (xs, xs,ψ) = σ2

z (xs, xs,ψ) is a measure
of the area of the source. The result of the simulation is the
concentration field generated by the release along an arbitrary
wind direction θ. The dispersion coefficients are computed
from the tabulated curves of Briggs [2].

2.2 Prairie Grass Experiment

The methodology was tested on data from the Prairie
Grass field experiment [3]. The experiment consisted of 68
consecutive releases of trace gas SO2 of 10 minutes each
from a single source. The mean concentration was measured
at sensors positioned along arcs radially located at distances
of 50 m, 100 m, 200 m, 400 m and 800 m from the source.
Information on the atmospheric conditions at the time of each
release is available, and each experiment could be classified
according to Pasquill’s atmospheric stability classes [15, 10].

2.3 Synthetic Dataset

To test the methodology, in addition of the observed Prairie
Grass measurements, we have created a synthetic dataset
simulating each of the 68 releases using the model described
in Equation (1) along with the meteorological and release
characteristics of the original Prairie Grass experiment. The
simulated concentrations are recorded at the corresponding
sensor locations for the original experiments. For each of the
68 releases, a study on the effect of the wind direction was
performed by varying the wind angle from -20 to +20 degrees,
in a 1 degree increment. Consequently, for each of the original
Prairie Grass release there are 41 synthetic releases. One
case simulates the Prairie Grass experiments using exactly the
parameters observed at the time of the experiments, while the
other 40 vary the wind direction, and keep all other parameters
constant.

This synthetic dataset allows to perform sensitivity
studies to wind direction, determining for each experiment
what is the wind direction that generates smaller error
between the simulated and observed concentration. Even
in a controlled experiment, like Prairie Grass, there are
discrepancies between the observed wind direction and the
angle that generates smallest error. This is because there
can be errors in measuring wind at the time of the experiment,
and because wind direction is usually not constant. The value
reported in the official experiment summary is the average of
the wind direction during the entire time of the release, and
might contain errors.

2.4 Error Functions

The quantitative comparison of observed and synthetic
concentrations is performed by applying several statistical
measures of error which reflect different aspects of the spatial
distribution of concentration. We considered two functions: the
normalized root mean square error NRMSE [11, 7], and AHY2
[13, 1, 5].

NRMSE =

s
(co − cs)2

co cs
(4)

AHY2 =

s
[log10(co + 1)− log10(cs + 1)]2

[log10(co + 1)]2
(5)

where co and cs are the observed and simulated concentration
at the sensors, respectively.

NRMSE is expressed in terms of variances, reflecting
both systematic bias and relative random errors, which are
estimated on a linear scale. NRMSE is strongly affected by
infrequently occurring large overprediction or large observed
outliers. AHY2, defined in [13] and [1] as metrics for the cost
function of a genetic algorithm for source detection, computes
the error on a logarithmic scale.

2.5 Dynamic Time Warping (DTW)

The error functions Eq. (4) and Eq. (5) are efficient to compute.
However, both are sensitive to slight spatial distortions. To
illustrate this, consider the dataset shown in figure 1a. The
observed Prairie Grass measurements and the synthetic
sequence generated for the same experiment look similar
in shape; however, the change in the wind direction has
caused the simulated data to shift slightly to the right. This
slight shifting on the x-axis will result in large errors being
computed by NRMSE and AHY2, since both error functions
require one-to-one mapping of data points in space. To
mitigate this problem, we propose to use DTW, a well-known
distance measure for signal and time series data, as our error
function. Given the two sequences X = x1, x2, ..., xn and
Y = y1, y2, ..., ym, DTW aligns the sequences by constructing
a n × m matrix M, where each entry M(i , j) represents the
distance d(xi , yj ) between points xi and yj . The entry M(i , j)
also corresponds to an alignment between xi and yj [28].
To determine the best alignment between two sequences,
DTW finds a path, W = w1, w2, ..., wk , through the matrix
that minimizes the warping cost, and satisfies the following
constraints [18, 28]:
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FIG. 1: Example computing error between the synthetic and
observed data using one-to-one and DTW mapping for Prairie
Grass experiment 23. The synthetic data is shifted by eight
degrees with respect to the observed parameters.

1. boundary conditions: w1 = (1, 1), wk = (m, n). This
requires that the warping path starts and finishes in the
first and the last points, respectively, of the sequences.

2. continuity: Let wi = (a, b) then wi−1 = (a′, b′) where
a − a′ ≤ 1 and b − b′ ≤ 1. This confines the allowable
steps in the warping path to neighboring points.

3. monotonicity: Let wi = (a, b) then wi−1 = (a′, b′) where
a−a′ ≥ 0 and b−b′ ≥ 0. This requires that the points in
the warping path be monotonically ordered with respect
to time.

The warping cost can be computed using dynamic program-
ming with the following recurrence [28]:

f (i , j) = d(xi , yj ) + min

8<:
f (i − 1, j − 1)
f (i − 1, j)
f (i , j − 1)

(6)

In other words, the cumulative distance f (i , j) is the sum of the
distance between current points (xi , yi ) and the minimum of the
cumulative distance in the neighboring points [18].

figures 1b and c show two different alignments for the
dataset shown in figure 1a. In figure 1b, the sequences are
aligned using an error function such as NRMSE that requires
one-to-one mapping, i.e. no warping allowed. As the figures
illustrate, the peaks are not aligned properly, thus resulting
in a large error. In contrast, in figure 1c, the sequences are
aligned using DTW. The non-linear mapping allows the peaks
to match, thus minimizing the error and the effect of wind
direction.

Note that the concentration series that we analyze are
not true time series, since the releases are continuous and the
concentration field is stationary. Instead, the series describes
the evolution of the concentration in space (not in time). The
shift which is identified by DTW is the displacement of the
simulated concentration field with respect to the observed
values. Essentially, we are replacing the variable ‘time’ with
the variable ‘space’, and instead of analyzing time-series, we
are analyzing ‘space-series’. (In this case the technique could
be more correctly referred to as ‘Dynamic Space Warping’).

figure 2 shows the DTW distance matrix for input
sequences X and Y . Each cell (i , j) represents the distance
between Xi and Yj . The white curve along the diagonal
denotes the best warping path, i.e. one that minimizes the
cumulative distance.

Some global constraint on the warping path is typically
specified to restrict the warping paths. The advantages of
using a global constraint are two-folds: (1) it produces more
intuitive alignment, and (2) it speeds up the computation by
narrowing the search space. A large warping window causes
the search to become prohibitively expensive, as well as
possibly allowing meaningless matching between points that
are far apart. On the other hand, a small window might
prevent us from finding the best solution. It has been shown
by Ratanamahatana and Keogh [29] that by learning the best
size and shape of the global constraint for different datasets,
higher accuracy can be achieved. In our work, we use the
Sakoe-Chiba Band [30], with 10% of the series length as the
warping window length.
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FIG. 2: DTW distance matrix for input sequences X and Y . Each cell (i , j) represents the distance between Xi and Yj . The
white curve along the diagonal denotes the best warping path, i.e. one that minimizes the cumulative distance.

3. Results

The proposed method was tested by performing a sensitivity
analysis of the wind angle, computing the error between the
observed and simulated concentrations. Experiments were
performed for all 68 Prairie Grass experiments, and repeated
for each of the three methods, DTW, NRMSE and AHY2.
The hypothesis is that the DTW method, because of its
ability to detect shifts in time-series, is less prone to errors
in wind angle. In the Prairie Grass experiments the sensors
are positioned along five concentric arcs, located at 50 m,
100 m, 200 m, 400 m and 800 m from the source. The
measurements are transformed into a time-series by sorting
each arc counterclockwise, from the inner arc to the outer
arc. The footprint of each experiment changes due to the
atmospheric class, the wind characteristics and the amount
of release. Therefore each release is measured by a varying
number of sensors, leading to time-series that vary in length,
from tenths to hundreds of observations.

figure 3 shows the results for Prairie Grass experiment 23
(left) and 29 (right). The top figures show an interpolation of
the release as measured at the time of the experiment. The
sensor location are indicated with black dots, and the source of
the release is at 0,0. The center panels show the results of the
wind angle sensitivity analysis for each of the three methods
performed. The graphs show the error between the simulated
and observed concentrations as the simulated wind angle
changed from −20 to +20 degrees with respect to the wind
direction recorded at the time of the experiment. In both cases
DTW obtained smaller error for a wide range of wind angles,
whereas both NRMSE and AHY2 obtained best results for a
very small range of values. For case 23, the best results are
found when the wind angle change is close to 0, meaning that

the observed concentrations are consistent with the observed
wind angle. For case 29, there is a variation between 6 and 9
degrees between the observed concentrations are consistent
with the observed wind angle, indicating some noise in the
observed data. The bottom panels illustrate the Cross-wind
profiles of concentration for the releases, plotted as functions
of the sensor number. The top graph shows the observed data
and the synthetic data generated using the observed wind
angle. The bottom graph shows the observed data and the
synthetic data generated using an adjusted wind angle. It is
evident that for case 29, a wind angle of -10 degrees with
respect to the observed wind direction better approximates
the observed values. This is an indication of noise in the
observed data, most likely to be attributed to fluctuations in
wind direction during the time of the experiment.

Table 1 summarizes the results for all the 68 Prairie
Grass experiments sorted by atmospheric type. The original
experiment identifier (PG ID) ia also reported in the table.
NRMSE and AHY2 behave similarly, finding best results with a
very small (usually 1 or 2) degrees of wind angle, DTW is able
to find best results with a much higher number of wind angles.

4. Conclusions

This preliminary study shows that DTW can be effectively used
as the error function driving algorithms for source detection.
A current shortcoming of the available error functions is that
they have difficulties recognizing simple spatial shifts in the
simulated distribution of concentration. This results in the error
functions reporting large errors even though the simulated



FIG. 3: Results for Prairie Grass release 23 (left) and 29 (right). The graphs show a-TOP) the original releases, interpolated
from the measurements made at the receptors (black circles); b-MIDDLE) the error found by AHY2, NRMSE and DTW as a
function of wind angle; and c-BOTTOM) the observed and simulated concentrations using the observed wind angle, and the wind
angle found by AHY2.



ψ PG ID DTW NRMSE AHY2
A 15 25 5 4
A 16 14 3 3
A 25 1 4 5
A 47 15 3 3
A 52 4 4 4
B 1 7 1 4
B 2 1 1 1
B 7 12 2 3
B 10 15 2 4
B 48S 3 2 3
C 5 19 2 3
C 8 29 2 2
C 9 23 1 3
C 19 25 2 3
C 27 27 3 3
C 43 21 3 4
C 44 13 3 4
C 49 23 2 3
C 50 23 2 2
C 62 27 2 1
D 6 29 2 2
D 11 21 1 1
D 12 27 2 2
D 17 13 3 2
D 20 29 2 3
D 21 21 2 1
D 22 17 2 2
D 23 19 1 2
D 24 23 2 1
D 26 17 3 4
D 29 25 2 3
D 30 19 2 3
D 31 21 3 3
D 33 28 2 2
D 34 25 1 2
D 35S 17 2 1
D 37 17 2 1
D 38 17 2 1
D 42 17 2 2
D 45 25 3 2
D 46 23 1 2
D 48 23 2 2
D 51 21 2 3
D 54 13 2 1
D 55 21 1 2
D 56 17 1 1
D 57 29 2 3
D 60 19 2 2
D 61 17 2 3
D 65 17 4 1
D 67 17 2 1
E 18 2 2 1
E 28 1 1 2
E 41 1 3 1
E 66 1 2 1
E 68 1 2 1
F 3 28 3 3
F 4 11 3 4
F 13 21 2 4
F 14 7 2 2
F 32 1 2 1
F 35 1 7 1
F 36 1 2 2
F 39 1 1 1
F 40 33 2 2
F 53 2 2 1
F 58 1 2 1
F 59 1 2 2

Table 1: Wind angle range in degrees for which best results
were obtained using DTW, NRMSE and AHY2. The results are
shown for each of the Prairie Grass experiments, identified by
PG ID, and are sorted by atmospheric class

cloud is in fact very close to the measured one in terms of
extension, shape, and magnitude, but not in the alignment.
The results of the sensitivity study support the hypotheses
that using DTW to compute the error between observations
with simulations is less sensitive to wind direction changes.
Furthermore, because some of the Prairie Grass experiments
contained errors in the observed wind direction, the DTW
method also works well in the presence of noise. The
advantage of DTW over NRMSE and AHY2 is largest for
atmospheric class A (unstable) through D (neutral). For stable
atmosphere (E and F) DTW also finds best results for a rather
small number of wind angles. This is most likely due to the
more limited data available (smaller time-series) caused by
a smaller footprint of the release, thus measured by fewer
sensors.
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