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Introduction: The Ensemble Kalman Filter (EnKF)

Get an approximate forecast covariance from an ensemble of
simulations, then use it in the Bayesian update

by sample covariance
converges to optimal filter in large ensemble limit and
gaussian case (Mandel et al., 2009b)
adjusts the state by linear combinations of ensemble
members

localized sample covariance
tapered sample covariance: better approximation for small
ensembles using assumed covariance distance
other localized filters (Ensemble adjustment, LETKF,...)
still restricted to linear combinations locally

probability distributions not too far from gaussian needed
for proper operation

See the book by Evensen (2009) for references.
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Morphing EnKF
Application to coupled atmosphere-fire modeling

Morphing EnKF (Beezley and Mandel, 2008)

Moving coherent features: need also position correction
Replace the state by a deformation of a reference
field + a residual

by automatic registration: multiscale optimization
also related to advection field found in radar analysis

run EnKF on the extended states: closer to gaussian
recover ensemble members from the deformation and
residual fields
basically, replace linear combinations by morphs:

Intermediate states from a linear combination of
deformation fields and residual fields
tricky: the right kind of combination to avoid ghosting
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Morphing EnKF
Application to coupled atmosphere-fire modeling

WRF-Fire (Mandel et al., 2009a)

Data source No assimilation

Standard EnKF Morphing EnKF
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Morphing EnKF
Application to coupled atmosphere-fire modeling

Some related work on position correction and
alignment

error model with position of features (Davis et al., 2006a,b)
and distortion (Hoffman et al., 1995; Marzban et al., 2009;
Marzban and Sandgathe, 2010; Nehrkorn et al., 2003)
global low order polynomial mapping (Alexander et al.,
1998)
alignment as a pre-processing step to additive correction
(Lawson and Hansen, 2005; Ravela et al., 2007; Aonashi
and Eito, 2010)
1D morphing to improve 12-hour forecasts (Beechler et al.,
2010)
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Optimal statistical interpolation by FFT

Find the analysis ua from the forecast uf by balancing the state error
with the covariance Q and the data error with the covariance R:∥∥uf − ua

∥∥2
Q−1 + ‖Hua − d‖2

R−1 → min
ua

⇐⇒ ua = uf + K
(
d − Huf

)
, K = QHT

(
HQHT + R

)−1

Standard: covariance Q drops off by distance

but Green’s function Q = ∆−1, ∆ = ∂2

∂x2 + ∂2

∂y2 , drops off OK: use
the Laplacian for covariance (Kitanidis, 1999)

∆ has no directional bias, ∆−α is the covariance of a
homogeneous isotropic random field. Power law spectrum,
eigenvalues C(m2 + n2)−α; larger α⇒ smoother functions

∆ is diagonal after FFT: fast implementation, at least when
H = I (all state observed); generalizations also exist.

Data assimilation with high-resolution weather fields in seconds
on a laptop, not a supercomputer.
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Spectral diagonal estimation of covariance

Sample covariance is a bad approximation for small ensembles: low
rank causes spurious long-range correlations. Instead,

transform the members into the spectral space

compute the diagonal of the sample covariance

fast matrix-vector operations in the spectral space

Orthogonal wavelets approximate weather states well (Fournier,
2000). Spectral diagonal approximation of the covariance:

by Fourier transform (Berre, 2000): homogeneous in space

by wavelets (Deckmyn and Berre, 2005; Fournier and Auligné,
2010; Pannekoucke et al., 2007): localized

Assumes that spectral modes are uncorrelated. Unlike classical
tapered covariance, provides automatic tapering and fast
multiplication by the inverse by FFT or fast wavelet transform.
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Automatic tapering by FFT diagonal estimation

Given covariance Ensemble of 5 random functions

Sample covariance FFT estimation
From Mandel et al. (2010b)
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Covariance estimation, 2 variables

Covariance, sample of 1000 Variable 1, sample of 5 Variable 2, sample of 5

Covariance, sample of 5 FFT estimation, sample of 5 Wavelet estimation, sample of 5

Estimation by FFT results in a distribution that is homogeneous in space,
smearing the distribution across the domain. Wavelet estimation keeps the
spatial structure, while filtering out spurious long-distance correlations.
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Optimal statistical interpolation by FFT
Spectral EnKF by FFT and wavelets

FFT EnKF for wildland fire simulation

One forecast member Another forecast member Data

One analysis member
with sample covariance

One analysis member
with FFT estimation

Another analysis member
with FFT estimation

Data assimilation for WRF-Fire by the morphing EnKF with ensemble size 5. Standard

sample covariance results in ghosting, while FFT estimated covariance gives

interpolation between the forecast and the data. From Mandel et al. (2010c).
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Conclusion

Spectral EnKF can operate succesfully with a very small
ensemble (5-10 members)
It can deal with position adjustment in combination with
morphing EnKF.
Observation on the whole domain or subrectangle.
The base algorithm is the same for FFT and for orthogonal
wavelets.
In progress:

Spectral EnKF in the case of multiple variables
Wavelet EnKF to improve data assimilation for wildland
fires, precipitation (Mandel et al., 2010b), and epidemics
simulation (Krishnamurthy et al., 2010; Mandel et al.,
2010a)
Assimilation of time series of point data
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