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1 INTRODUCTION

The mitigation of ground clutter for weather radars is
an important aspect of data quality and interpretation of
echoes. Recently a ground clutter identification technique
was introduced that robustly detects ground clutter con-
taminated signals in real time (Hubbert et al. 2009b,a)
named Clutter Mitigation Decision (CMD). In Hubbert
et al. (2009b) a clutter metric CPA (Clutter Phase Align-
ment) is introduced that is shown to be an effective clutter
discriminator. It is based on the idea that echoes from sta-
tionary ground clutter targets are constant (assuming that
the radar scan angle changes very little). This means that
phase of the complex in-phase (I) and quadrature compo-
nents (Q), arg{I + j@}, is constant so that

N N
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where x; is the complex times series corresponding to
a radar resolution volume. Thus, typical ground clut-
ter targets have CPA > 0.9 while for weather targets,
CPA < 0.6. Recently collected experimental radar data
revealed a few ground clutter target which possessed very
low CPA. A distinguishing feature is that the spectrum
of these data show a double peak close to zero velocity.
This paper explains the nature of such ground clutter tar-
gets.

This paper also investigates the spectrum width of
ground clutter signals using both modeled data and ex-
perimental data from S-Pol, NCAR’s S-band polarimet-
ric radar. A new estimator for narrow spectrum widths is
introduced.

CPA =

2 “DOUBLE PEAKED” CLUTTER SPECTRA

Experimental radar data from the NEXRAD KEMX in
Flagstaff, Arizona show anomalous ground clutter targets
with very low, uncharacteristic CPA values. The low CPA
values cause the CMD algorithm to misclassify these pix-
els as weather instead of clutter. Though rare, it is of
interest to explain the cause and nature of such anoma-
lous echoes. Shown in Fig. 1 is an example of such data.
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The top panel (a) shows the power spectrum and the dou-
ble peak close to zero velocity (center vertical line in the
panel). Since the numerator of CPA (Eq.(1)) is the vector
sum of the time series values, the low value of CPA can
be explained by examining the magnitude and phase of
the time series shown in panels (b) and (c), respectively.
Note the high, close to equal power at the beginning and
end of the time series; then note that the phase at the be-
ginning and end of the time series is about 180° degrees
apart. Thus the vector sum of the complex numbers will
be relatively small. Alternately, it is seen in the power
spectrum that there is a reduction of power at zero ve-
locity relative to the surrounding spectral points. Exam-
ining the real and imaginary parts of panels (d) and (e),
respectively, it is seem that the curves cross zero and have
both negative and positive values. Since the zero velocity
component is proportional to (3 )2+ (3" ¢)?, the sum of
these negative and positive values have a tendency to re-
duce the zero velocity component relative to the surround
velocity components.

To explain the the physical nature of clutter targets
that can cause such signatures, we use the clutter model
presented in Hubbert et al. (2009b). Shown in Fig. 2 is
a schematic of the clutter model for 64 point sampling.
There are 256 scattering centers and the radar beam is
modeled as Gaussian with 192 points. The 3 dB beam
width is 64 points. Radar time series samples are gen-
erated by convolving the radar beam with the scattering
centers. One scattering center is considered dominant,
larger in magnitude than the other scattering centers and
is constant.The other scattering centers are modeled as
Rayleigh random variables. Form more details see Hub-
bert et al. (2009b).

This model model, however, does not produce times
series with double peaks in the spectrum as discussed
above. This can be explained if there are two dominant
scatterers in the radar resolution volume. These two dom-
inant scatterers must be characterized with phase shifts
upon backscatter that are about 180° apart and scattering
magnitudes that are similar. Shown in Fig. 3 is the power
spectrum of simulated data resulting from the model. As
can be seen, there is a deep minimum at zero velocity.
Shown in Figs. 4 and 5 are the real and imaginary parts,
and the magnitude and phase, respectively. As explained
above, these plots demonstrate why there is minimum at



zero velocity, at least mathematically. Such signatures are
are fairly rare. The CPA of such clutter targets are typi-
cally less that 0.2 so that CMD will consistently classify
such echoes are weather. To mitigate this, the calcula-
tion of CPA can be broken into two parts defined by the
location of the minimum of the time series magnitude.

3 ESTIMATING THE SPECTRUM WIDTH

The typical estimators of spectrum for ground clutter
echoes have variance if only a few samples are avail-
able, i.e. less than about 100 samples (Doviak and Zrni¢
1993). The difficulty was illustrated in Hubbert et al.
(2009b). For narrow spectrum width signals, frequently
|Ri| > Ry where Ry and R; are the zeroth and first lag
of the autocorrelation function (the zeroth lag is power).
This causes the so called Ry, R; spectrum width esti-
mator to be undefined. Many authors set the spectrum
width to zero when |R;| > Ry. As shown in Hubbert
et al. (2009b), when modeling weather signals with 64
samples for spectrum width of 0.5 m/s, at S-band with a
PRT = 0.001s, about 42% of the generated time series
will have |Ry| > Ry, and the histogram is given here
in Fig. 6 (Hubbert et al. 2009b). The mean spectrum
width estimate of the remaining 58% of the time series
is 1.1 m/s. Clearly, the Ry, R; spectrum width estimator
does not yield an accurate estimate of the spectrum width
of narrow spectrum with signals. Thus, if the spectrum
width narrow spectrum width of clutter is to be investi-
gated experimentally, a better spectrum width estimator
needs to be found.

Better spectrum width estimation (improved bias and
variance) can be accomplished by fitting a Gaussian curve
to the first 6 lags of the autocorrelation function. This is
done by first taking the logarithm of the autocorrelation
function and then performing a quadratic fit. Shown in
Fig. 7 are 10 sample autocorrelation functions (magni-
tude) for a spectrum width of 0.2m/s, PRT = 0.001s,
S-band, 64 samples. A rectangular window is used on the
time series. A quadratic fit to the first 7 lags (0 through
6) of the autocorrelation function is used to estimate the
spectrum width. For this simulation, 38% of the gener-
ated time series yielded a spectrum width of zero. To
understand this, view the top two autocorrelation curves
in Fig. 7. The curves are normalized so that the zeroth lag
(power) of each time series is 1. As can be seen, the top
two curves actually become greater than 1which is phys-
ically meaningless. Figure 8 show one such auto correla-
tion plot. Note that the autocorrelation values are greater
than one out beyond 20 lags! When this occurs, the spec-
trum width estimate is set to zero. This phenomena is due
to the finite length of the time series and the unbiased au-
tocorrelation estimate (Hubbert et al. 2009b; Bringi and
Chandrasekar 2001). The accuracy of the spectrum width

estimate can be improved if a Hamming window is used
on the time series and then the autocorrelation function is
calculated. The number of zero width estimates is then
reduced from 38% to 13%. Figure 9 shows the mean
(bias) and standard deviation versus spectrum width for
simulated data when a Hamming window is used. The
resulting autocorrelation function is compensated taking
into account the autocorrelation function of the window
function by itself (the auto correlation function of the data
is affected (biased) by the used window function). Fig-
ure 10 shows a histogram of the simulated data for a spec-
trum width of 0.2 m/s while Fig. 11 shows a histogram for
a spectrum width of 0.5 m/s. Compare Fig. 11 to the pre-
vious Fig. 6 which uses the Ry/R; estimator. The 7-lag
estimator shows much less variance and has a bias of only
-0.1m/s.

This 7-lag spectrum width estimator is now used for
experimental data. The objective is to experimentally in-
vestigate the spectrum with of ground clutter for various
scan rates and dwell angles. We first vary the scan rate of
S-Pol while maintaining the same dwell angle of of 1°.
The scan rates are 2.5°s~1, 5.0°s~1, 7.5°s~1, 10.0°s~!
and 12.5°s~!. Shown in Figs. 12 and 13 are histograms
for the scan rates of 2.5°s~! and 12.5°s7!, respectively.
The means are 0.05ms~! and 0.24ms~!. The increase
in the mean value and the increase in variance can be at-
tributed to the increase in scan rate. Figure 14 shows the
mean estimated spectrum widths versus scan rate with the
blue curve. The red curve is a straight line fit with the
slope and intercept given on the plot.

4 SUMMARY AND CONCLUSIONS

This paper has examined 1) an anomalous double-peaked
ground clutter spectrum, 2) a new spectrum width esti-
mator for narrow spectrum widths and 3) applied the new
spectrum width estimator to experimental S-Pol data.

The anomalous double-peaked spectra were explained
and modeled by having two dominant clutter targets such
that their phase shift upon backscatter differed by 180°.
These such clutter targets, while rare, are important to
identify since they cause the clutter metric CPA (Clutter
Phase Alignment) to be very low and in turn cause CMD
(Clutter Mitigation Decision), to incorrectly misclassify
the echo as weather. The CPA calculation has been mod-
ified to correctly identify such echoes as clutter.

A new spectrum width estimator was given that fits a
Gaussian curve to the first 7-lags of the auto correlation
function. The performance of this estimator has greatly
reduce bias and variance as compared to the traditional
Ry /R; estimator for narrow spectrum widths.

The new 7-lag estimator was then applied to experi-
mental S-Pol data to investigate the effects of radar scan
rate on spectrum width estimates.
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Figure 1: An example “double peaked” anomalous
ground clutter return (time series). CPA is about 0.1
which is indicative weather echoes.
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Figure 3: Power spectrum of modeled data showing a
doubled peaked spectrum..
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Figure 4: Top: real part of time series; Bottom: imagi-

nary part of time series, corresponding to Fig. 3. Figure 5: Top: magnitude of time series; Bottom: phase

of time series corresponding to Fig. 3.



Example AC for N=64, w=0.2 m/s
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Figure 6: Spectrum width histogram for simulated data. ~ Figure 8: Auto correlation plot for simulated data. Sim-
Simulation parameters: spectrum width = 0.5 m/s, PRT  ulation parameters: spectrum width = 0.2 m/s, PRT
=0.001 s, S-band, 64 points SNR= 100dB. 42.4% of the =~ =0.001 s, S-band, 64 points SNR= 100 dB.
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Figure 9: The mean and standard deviation of simulated
data as a function of spectrum width. Simulation param-
eters: PRT =0.001s, S-band, 64 points, SNR= 100dB.
The 7-lag estimator is use.

Figure 7: Auto correlation plots for simulated data.
Simulation parameters: spectrum width = 0.2 m/s, PRT
=0.001 s, S-band, 64 points SNR= 100 dB.
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Figure 10: Histogram of spectrum width estimates for
simulated data. Simulation parameters: spectrum width
= 0.2 m/s, PRT =0.001s, S-band, 64 points SNR=
100dB.

Figure 12: Histogram of spectrum width estimates for
experimental data gathered by S-pol. The dwell angle is
1° and the scan rate is 2.5°s7 1.
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Figure 11: Histogram of spectrum width estimates for ~ Figure 13: Histogram of spectrum width estimates for
simulated data. Simulation parameters: spectrum width — experimental data gathered by S-pol. The dwell angle is
= 0.5 m/s, PRT =0.001 s, S-band, 64 points SNR= 100dB ~ 1° and the scan rate is 12.5°57 1,



Antenna Scan Rate vs. Clutter Width (PPLS6 hamming, 1 deg)
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Figure 14: Spectrum width versus radar scan rate for
experimental S-Pol clutter data. The dwell angle isI®.
The red curve is a least squares straight line fit.



