Sensitivity analysis in linear and nonlinear models: A review

Caren Marzban

Applied Physics Lab. and Department of Statistics Univ. of Washington, Seattle, WA, USA 98195

Introduction

Consider:

Question: How do the inputs affect the outputs?
General Answer: Sensitivity Analysis (SA).
However, different people mean different things by SA. E.g.

- How does input uncertainty propagate (Uncertainty A.)?
- How does the addition of a new observation affect the outcome?
- How is output uncertainty apportioned among the inputs?

And they do it for different reasons. E.g.

- Knowledge discovery.
- Ranking of the inputs.
- Dimensionality Reduction.
- Model tuning. Etc.

Introduction ...

Three components:

1) Experimental Design.

- Make or break.
- No experimental error. Computer Data. In vitro vs. In silico.
- How should the inputs be selected?
- To optimize accuracy and precision.
- random sampling will not give the most precise estimate.

2) Choice of SA method.

- Performance vs. inclusion/exclusion of inputs.
- One At a Time.
- High-dimensional space is mostly corners.
- Generally three types:
- Local (derivatives, adjoint),
- Screening (factorial designs)
- Global (variance-decomposition)

3) Method for estimating conditional expectations.

- Monte Carlo
- Emulation (Gauss Process/Krig, Poly. Regression, NN, ...)

A few issues specific to computer experiments:

- No experimental error to minimize.
- Emulator must have zero error on training set.
- Error on test set must be consistent with realistic uncertainty.

Q: Why $\mathrm{AI} / \mathrm{CI}$? $\quad \mathrm{A}: 1$ and 3 .

Experimental Design

Q: What values of the inputs should be selected?

- Impossible to explore all values. So, sample!
- Simple random sample does not give most precise estimates.
. - Who cares?

With low precision (black): Cannot pick better algorithm. If/when forced, may take B.
But with higher precision, A wins.

- Space-filling samples/designs give more precise estimates. E.g.,
- Latin hypercube sampling

A simple random sample (black) and a latin square sample (red). No 2 red dots have a row or col in common.

Simple random vs. Latin square sampling

Estimate mean of z-axis:

Distribution of means according to simple random (black) and latin square (red) sampling, for different sample sizes. True mean $=$ horizontal line .

Variance-Based SA

Two "theorems" save the day:

$$
\begin{gathered}
\operatorname{Var}[Y]=E[\operatorname{Var}[Y \mid X]]+\operatorname{Var}[E[Y \mid X]] \\
Y=\eta\left(X_{1}, X_{2}, \ldots\right)=E[Y]+z_{1}\left(x_{1}\right)+z_{2}\left(x_{2}\right)+z_{12}\left(x_{1}, x_{2}\right)+\ldots
\end{gathered}
$$

where

$$
\begin{gathered}
z_{i}\left(x_{i}\right)=E\left[Y \mid x_{i}\right]-E[Y] \\
z_{12}\left(x_{1}, x_{2}\right)=E\left[Y \mid x_{1}, x_{2}\right]-E\left[Y \mid x_{1}\right]-E\left[Y \mid x_{2}\right]+E[Y]
\end{gathered}
$$

Measures of Sensitivity

Reduction in uncertainty of Y, after X_{i} is learned:

$$
V_{i}=\operatorname{Var}\left[E\left[Y \mid X_{i}\right]\right]
$$

Reduction in uncertainty of Y, after X_{1} and X_{2} are learned:

$$
V_{12}=\operatorname{Var}\left[E\left[Y \mid X_{1}, X_{2}\right]\right]
$$

Uncertainty in Y remaining, after X_{2} is learned:

$$
V_{T 1}=\operatorname{Var}[Y]-\operatorname{Var}\left[E\left[Y \mid X_{2}\right]\right] \quad(1,2) \text { not a typo! }
$$

Main effect index of X_{i} :

$$
S_{i}=V_{i} / \operatorname{Var}[Y]
$$

Total effect index of X_{i} :

$$
S_{T i}=V_{T i} / \operatorname{Var}[Y]
$$

Example 1

$$
Y=\eta\left(X_{1}, X_{2}\right)=X_{1}
$$

	General	Indep X_{1}, X_{2}
z_{1}	$x_{1}-E\left[X_{1}\right]$	$x_{1}-E\left[X_{1}\right]$
z_{2}	$E\left[X 1 \mid X_{2}\right]-E\left[X_{1}\right]$	0
z_{12}	$-z_{2}\left(x_{2}\right)$	0
V_{1}	$V\left[X_{1}\right]$	$V\left[X_{1}\right]$
V_{2}	$V\left[E\left[X_{1} \mid X_{2}\right]\right]$	0
V_{12}	$V\left[X_{1}\right]$	0
$V_{T 1}$	$V\left[X_{1}\right]-V_{2}$	$V\left[X_{1}\right]$
$V_{T 2}$	0	0
S_{1}	1	1
S_{2}	$V_{2} / V\left[X_{1}\right]$	0
$S_{T 1}$	$1-S_{2}$	1
$S_{T 2}$	0	0

Example 2

$$
Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{12} X_{1} X_{2}
$$

Theorem: Things are messy. Proof:

$$
\begin{aligned}
z_{1} & =\beta_{1}\left(x_{1}-E\left[X_{1}\right]\right) \\
& +\beta_{2}\left(E\left[X_{2} \mid X_{1}\right]-E\left[X_{2}\right]\right) \\
& +\beta_{12}\left(x_{1} E\left[X_{2} \mid X_{1}\right]-E\left[X_{1} X_{2}\right]\right) \\
z_{2} & =\text { similar } \\
z_{12} & =\beta_{1}\left(E\left[X_{1}\right]-E\left[X_{1} \mid X_{2}\right]\right) \\
& +\beta_{2}\left(E\left[X_{2}\right]-E\left[X_{2} \mid X_{1}\right]\right) \\
& +\beta_{12}\left(x_{1} x_{2}-x_{1} E\left[X_{2} \mid X_{1}\right]-x_{2} E\left[X_{1} \mid X_{2}\right]-E\left[X_{1} X_{2}\right]\right)
\end{aligned}
$$

Even for indep. X_{1}, X_{2}, and $E\left[X_{i}\right]=0$

$$
\begin{aligned}
z_{1} & =\beta_{1} x_{1}-\beta_{12} E\left[X_{1} X_{2}\right] \\
z_{2} & =\beta_{2} x_{2}-\beta_{12} E\left[X_{1} X_{2}\right] \\
z_{12} & =\beta_{12}\left(x_{1} x_{2}-E\left[X_{1} X_{2}\right]\right)
\end{aligned}
$$

Etc. for $V_{i}, V_{T i}, S_{i}, S_{T i}$.
Moral:
If model $=$ linear $\left(\beta_{12}=0\right)$, the $S_{i} \sim(\text { std regress coeff })^{2}$.
Else, not, and complicated.

Example 3

Black Box = Lorenz, 1963

Inputs $=s, r, b$.
Outputs $=X_{\max }, Y_{\max }, Z_{\max }$.

Main conclusion for Lorenz

All sensitivity measures:

According to most measures, $X_{\max }$ is

- most sensitive to r,
- not so sensitive to s, and b,
- but there exists an "interaction" between s and r,
- and between r and b,
- but not as much between s and b.

Peeking into the black box
The blackbox according to one NN emulator:

Final Remarks

- Sensitivity Analysis is intuitive, but ambiguous.
- Careful attention to experimental design is crucial.
- Variance-based methods naturally tie SA to emulators.
- Not clear (to me) if "fancy" emulators are necessary.
- Many AI techniques come with natural ranking of inputs.
- But in most, an "explanation" is lacking.
- Ranking based on variance is explanatory.
- But does not assure better performance.

Coming soon:

- Emulation with gaussian process (zero trn error) vs. NN (not).
- Extension to Multivariate (multiple output).
- Orthogonal designs to address collinearity.
- Connection with ensemble methods.

References

Bernardo, M. C., R. J. Buck, L. Liu, W. A. Nazaret, J. Sacks, and W. J. Welch,1992: Integrated circuit design optimization using sequential strategy. IEEE transactions on CAD, 11, 361-372.

Bowman, K. P., J. Sacks, and Y-F. Chang, 1993: Design and Analysis of Numerical Experiments. J. Atmos. Sci., 50(9), 1267-1278.

Bolado-Lavin, R., and A. C. Badea, 2008: Review of sensitivity analysis methods and experience for geological disposal of radioactive waste and spent nuclear fuel. JRC Scientific and Technical Report. Available online.

Butler, N. A., 2001: Optimal and orthogonal Latin hypercube designs for computer experiments. Biometrika, 88, 84757.

Chen, V. C. P, K-L. Tsui, R. R. Barton. and M. Meckesheimer, 2006: A review on design, modeling and applications of computer experiments. IIE Transactions, 38, 273-291.

Douglas, C. M., 2005: Design and Analysis of Experiments, John Wiley \& Sons, 643 pp.
Fang K.-T., Li R.and Sudjianto A. (2006), Design and Modeling for Computer Experiments, Chapman \& Hall
Hseih, W. 2009: Machine Learning Methods in the Environmental Sciences: Neural Network and Kernels, Cambridge University Press. 349 pp.

Kennedy, M., A. O’Hagan, A. and N. Higgins, 2002: Bayesian Analysis of Computer Code Outputs. In Quantitative Methods for Current Environmental Issues, C W Anderson, V Barnett, P C Chatwin, A H El-Shaarawi (Ed.), 227-243. Springer-Verlag.

McKay, M. D., R. J. Beckman, W. J., Conover, 1979: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2), 239-245 .

Oakley, J. E., and A. O'Hagan, 2004: Probabilistic sensitivity analysis of complex models: a Bayesian approach. J. R. Statist. Soc., B 66(3), 751-769.

Rasmussen C.E., Williams C.K.I. (2006), Gaussian Processes for Machine Learning, the MIT Press, www.GaussianProcess
Robinson, G. K., 1991: That BLUP is a good thing: The estimation of random effects." Statistical Science, $\mathbf{6 (1) , ~ 1 5 - 5 1 . ~}$

Sacks, J., S. B. Schiller, and W. J. Welch, 1989: Designs for Computer Experiments. Technometrics, 31(1), 41-47.

Sacks, J., W. J., Welch, T. J. Mitchell, H. P. Wynn, 1989: Design and Analysis of Computer Experiments. Statistical Science, 4, 409-423.

Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, 2010: Variance based sensitivity analysis of model output: Design and estimator for the total sensitivity index. Computer Physics Communications, 181, 259270.

Santner T.J., B. J. Williams, and W. I. Notz, 2003: The Design and Analysis of Computer Experiments. Springer, 121-161.

Welch, W. J., R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and M. D. Morris, 1992: Screening, Predicting, and Computer Experiments. Technometrics, 34(1), 15-25.

Williams, B., and T. Santner : Univariate and Multivariate Sensitivity Analysis Using GPMSA. Talk, available on web.

