
746   POTENTIAL RETRIEVAL OF AEROSOL PROPERTIES COMBINING THE MULTISPECTRAL, MULTIANGLE 
RESEARCH SCANNING POLARIMETER (RSP) MEASUREMENTS OF THE INTENSITY AND LINEAR 

POLARIZATION OF LIGHT. 
 

Alexandra Tsekeri*, Barry Gross, Fred Moshary, Sam Ahmed 
Optical Remote Sensing Lab, City College of New York 

 
 
 
 

 
ABSTRACT 

 

Quantifying the microphysical properties of aerosols is crucial for quantifying global climate forcings. Satellite based 
aerosol retrievals rely usually on intensity measurements of the scattered light, but this approach has been proven to 
be quite limited for cases of absorbing aerosols as well as contamination from the ground surfaces. It is with these 
limitations in mind that we plan to improve the quality and scope of aerosol retrievals by making use of soon to be 
available polarimetric sensors, such as the Aerosol Polarimetry Sensor (APS) on the GLORY satellite. In order to 
utilize fully the increased information content on aerosol optical depth (AOD), size distribution and single scattering 
albedo (SSA), intrinsically available in multispectral-multiangle polarimetric observations, we make use of suitably 
constructed neural networks and demonstrate the potential of this approach on simulated aircraft instrument data 
from the Research Scanning Polarimeter (RSP).  

 
 
 

1. INTRODUCTION 
 

Aerosols play an important role for the physical and 
chemical processes in the atmosphere and influence 
climate by strongly modifying the global energy balance 
(GEB). In modifying GEB, aerosols may act directly by 
reflecting or absorbing the sunlight, cooling or heating 
the earth respectively. This direct interaction is greatly 
affected by the SSA of the aerosols and a large 
uncertainty of this direct effect stems from limitations in 
isolating the SSA from current intensity based retrievals.  

In addition, aerosols can modify GEB indirectly by 
acting as cloud condensing nuclei (CCN), thereby 
modifying the formation of clouds. The efficiency of 
particulates as CCN is a function of aerosol size, with 
coarser modes being more efficient in interacting with 
water vapor. In addition, aerosol classification is 
important in these indirect mechanisms since 
hygroscopic aerosols are more prone to act as CCN. 
Overall, the aerosol indirect interactions tend to 
enhance cloud formation thereby driving the earth 
climate towards lower temperatures. However, due to 
the complex dependence on aerosol properties, this 
negative forcing on climate is estimated with a very 
large uncertainty, due mainly to the non-accurate 
monitoring of the aerosols. The fact that this uncertainty 
alone is comparable in magnitude to the positive forcing 
of the greenhouse gases on the climate highlights the 
need for better aerosol retrievals (Hansen et al. 2005). 
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Finally, we should point out that particulates have also 

serious effects on human health, especially in the 
heavily polluted environments of big cities, where the 
majority of the earth population resides. Furthermore, 
the health impacts are a function of the particulate size, 
with smaller particles being more likely to cause 
respiratory and pulmonary distress in certain high risk 
population groups. This has lead to stringent emission 
standards from EPA and reinforces the need to provide 
better satellite observations of fine mode particulates as 
opposed to overall AOD.  

These climate and health issues clearly point to the 
need of improving existing monitoring strategies in order 
to achieve minimum SSA and fine/coarse mode 
estimates. Such retrievals will be a clear improvement 
over those currently obtained by satellites. The most 
used satellite sensors of the aerosol retrieval community 
provide only the intensity of the scattered light in 
multiple wavelengths (MODIS) and multiple angles 
(MISR). However, as pointed out by Mishchenko and 
Travis (1997, 1997a), the multispectral intensity does 
not provide the information contrast needed for detailed 
aerosol property retrieval and in general is limited to the 
total AOD. More successful retrievals are possible with 
the combination of intensity and polarization of the 
scattered light, over multiple wavelengths and angles. 
An instrument with such capabilities is the POLDER 
instrument on PARASOL. However, the limited spectral 
range of POLDER makes the retrievals less than 
optimal. This limitation has lead to the development of 
the APS instrument on the soon to be launched GLORY 
satellite (Mishchenko et al. 2007), which is optimal in 



separating out different modes and removing surface 
contaminations, due to its large spectral range both in 
the visible and in the IR.  

Since data from APS are not available yet, we plan to 
use data from the RSP instrument (Cairns et al. 1999). 
The RSP measures light intensity and polarization at 
nine wavelengths in the visible and NIR (410, 470, 550, 
670, 865, 960, 1590, 1880 and 2250 nm) and 152 
angles from -60

o
 to +60

o
. It has been used in a number 

of experiments and has produced a wealth of data , the 
analysis of which supports the promise for more 
effective aerosol retrievals with the inclusion of 
polarization (Chowdhary et al. 2001, 2002, 2006; 
Waquet et al., 2009). In this analysis we used simulated 
measurements as if they were taken from RSP since 
our work with real RSP data is still in progress. 

 
The inversion of multispectral, multiangle polarized 

reflectance data for the retrieval of the aerosol 
properties is not an easy task. For operational purposes, 
the intensity-only retrievals use look-up-tables which are 
reasonable when the dimension of the parameter 
retrieval space is small. However, the inclusion of more 
variables-dimensions in the parameter space renders 
this approach unwieldy. On the other hand, direct 
inversion based on a-priori covariance estimates of 
signal and parameter uncertainties is possible using the 
optimal estimator technique (Rodgers 2000, Dubovik 
2004), but this approach requires extensive computing 
time since the inversion process must go through large 
scale matrix operations on a pixel-to-pixel basis. To 
avoid this problem, we use a neural network (NN) 
technique (Haykin 1999), which is specifically designed 
to handle multi-parameter inversion based on a-priori 
calculated relations between aerosol and measurement 
parameters. With such a NN constructed, based on 
suitable input-output relations, real-time inversion 
becomes cost-efficient.  

NNs have the ability for robust inversion as long as 
they are built to take into account the real-world 
variability. This requirement poses the biggest challenge 
for NNs and for simplicity, we are forced at present to 
make some assumptions which are discussed more in 
depth in section 2 and need to be revisited in the future 
in order to build a more robust retrieval. With this 
limitation in mind, the current work is closer to a proof of 
concept of the value of NN inversion in general in 
extracting a broad set of aerosol parameter retrievals 
than a fixed algorithm for RSP or APS retrieval.  

 
 

2. METHODOLOGY 
 

2.1 Simulated dataset characteristics 
 

Our training dataset consists of the intensity and 
linear polarization of light simulated as if they are 

measured by the RSP instrument in six visible and NIR 
channels (410, 470, 550, 865, 1590 and 2250 nm) 
above atmosphere-and-ocean synthetic scenes. In 
order to match our simulations with realistic conditions, 
we acquire the atmospheric and oceanic synthetic 
scenes properties from various climatologies (Dubovik 
et al. 2002, Smirnov et al. 2002). In addition, we 

consider as done in practice, a simple plane-parallel 
atmosphere without clouds or aloft plumes, with all the 
aerosols concentrated in a homogeneous marine 
boundary layer (MBL) of a variable height from 200 m to 
1500 m (Zeng et al. 2004). The surface is taken as an 
open ocean with chlorophyll concentration in the range 
of 0.07-0.2 mg/m

3
, wind speed of 6.5-7.5 m/sec, and no 

organic dissolved matter. 
The aerosol properties in our simulations are taken 

from the global AERONET dataset (the Level 2 
Almucantar Inversion Products) and the information 
provided in Dubovik et al. (2002) and Smirnov et al. 

(2002). The defining aerosol properties for retrieval 
include the mean radius, width and volume 
concentration of the fine and coarse modes of the 
bimodal lognormal size distributions of the particles, and 
the real and imaginary part of their refractive indices. 
Their values have characteristic natural distributions for 
“oceanic” and “mixed” aerosols, as defined in the 
climatologies. Although not a very realistic simplification, 
the refractive index is considered constant for all 
wavelengths, as in all satellite based retrievals. We also 
do not take into account strongly absorbing aerosols, 
restricting the maximum value of the imaginary part of 
the refractive index to 0.01. Furthermore, we make the 
assumption of spherically shaped particles, which is 
sufficient for retrieving most aerosol types, except the 
desert dust (Dubovik et al. 2006) and is consistent with 
the maritime application considered.  

Perhaps the most biased factor of our training dataset 
is the geometry of the simulated measurements, which 
is taken to be close to the principal plane. We choose 
this configuration, because the majority of the RSP 
measurements are made along the principal plane, 
where there is the most information for the scattering 
properties of the aerosols. However, this is not going to 
be the case for the APS measurements, where more out 
of plane configurations will be realized. Thus, the 
difference in azimuth angle between the sun and the 
viewing instrument is taken to be in the range of -10

o
 to 

10
o
. The sun zenith angle is in the range of 25

o
 to 55

o
 

degrees and the viewing angles are from -55
o
 to -35

o
 

degrees. The viewing angles are chosen outside the 
domain of serious sun glint contamination.  

We also take into account the absorption from water 
vapor, ozone and nitrogen dioxide. These gases are 
homogeneously distributed in the atmosphere below the 
aircraft and their concentrations are in the range of 1.5-
3.5 cm/atm, 240-300 Db and 0.05-0.1 ppm, respectively. 
These values do not cover the whole range of the gases 



concentrations worldwide –they are only indicative 
values.  

 
The aerosols, gases and surface properties describe 

sufficiently the simple synthetic scenes of our simulated 
dataset. Based on these characteristics we can 
calculate the intensity and the linear polarization at the 
aircraft level (4 km) using the adding-doubling vector 
radiative transfer code (De Haan et al. 1987)   
specifically designed to model the RSP measurements 
from Dr. Brian Cairns of the Glory team. The vertical 
structure of the atmosphere is an essential parameter 
for the accurate modeling of the polarized reflectance, 
especially when absorbing aerosols are present 
(Waquet et al. 2009). For this reason the information for 

the vertical structure of the atmosphere from lidar data 
is important for our retrieval method and will be ingested 
in it in our future work.  

We also take into account the measurement and 
calibration noise of the RSP. We use the formulas of 
Waquet et al. (2009) to model them as: 
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where σI, σP  is the noise of intensity and linear 
polarization measurements respectively, i denotes the 
measurement at a specific viewing angle and 
wavelength, μo is the sun zenith angle, I is the light 
intensity, P is its linear polarization and DP is the degree 
of its linear polarization (DP = P/I).  

 
The values of the synthetic scenes properties are 

randomly generated and are taken to be independent 
from each other. The distributions of the values used for 
all the properties are in Table 1. The aerosol properties 
distributions resemble the histograms of the global 
AERONET data. Although the aerosol properties that 
fall in the same group of “oceanic” or “mixed” aerosols 
follow the characteristic properties of the group, their 
values are randomly generated, independently from the 
other properties in the group. In this way, the NN is 
being trained on data which captures the natural 
variability and diversity expected for the particular region 
considered.  
 
 
 
 
 
 

2.2 Neural network 
 

The NN is a statistical tool which evaluates the 
inverse function of our retrieval algorithm by finding the 
statistical relationships between light properties 
(intensity and linear polarization) and aerosol 
characteristics. During the training stage we provide the 
neural network with the simulated RSP measurements 
of the intensity and linear polarization, paired with the 
aerosol properties of the corresponding synthetic 
scenes that generate the simulated signals. Following 
the common practice, we also use part of the simulated 
dataset for the testing stage to evaluate the 
performance of the retrieval. Of course, a better test for 
the performance and robustness of our neural network 
is the use of real measurements which is in progress.  

We use a one-hidden-layer neural network, which is 
proved to be able to simulate any continuous function, 
making the use of more hidden layers unnecessary for 
our case. The input of our neural network consists of 
two hundred forty variables, which are the simulated 
RSP light intensity and linear polarization 
measurements over twenty viewing angles and six 
channels. The outputs are the mean radius and width of 
the fine and coarse modes, the real and imaginary part 
of the refractive index and the AOD at 550 nm (Table 2). 
We train the neural network with the neural networks 
toolbox of MATLAB. Specifically, we use the gradient 
descent with momentum and adaptive learning rate 
backpropagation algorithm (traingdx). From the 
simulated dataset we select randomly six thousand 
cases for the training and one thousand cases for the 
testing. 

 
 

2.2.1 Preprocessing with Principal Component Analysis. 
 

Unfortunately, strong multicollinearities inhibit our 
neural network performance due to information overlap 
in the measurement responses, which results in 
phenomena of competing neural network weights 
between the correlated variables. Such competition 
inhibits the predictive ability of the corresponding 
variables and results in less accurate and less robust 
evaluation of the outputs (Aires et al. 2004). The 
preprocessing of input variables is thus necessary in 
this case, but does not come without a cost, since it 
introduces a bias and decreases the resolution of our 
retrieval.  
 
 
 
 
 

 



Table 1.   The distributions of the values used for the simulations 

 min-max 
distribution 

type 
distribution 

mean 
distribution 

width 

aerosol 
properties 

oceanic 
aerosols 

lognormal 
bimodal size 
distribution 
parameters 

fine mode mean 
radius (μm) 

0.1-0.25 lognormal 0.16 0.02 

fine mode width 
(μm) 

0.3-0.7 lognormal 0.48 0.04 

fine mode volume 
concentration 
(μm

3
/m

3
) 

0.01-0.15 lognormal 0.015 0.01 

coarse mode mean 
radius (μm) 

1.7-4 lognormal 2.7 0.16 

coarse mode width 
(μm) 

0.6-0.8 lognormal 0.72 0.04 

coarse mode 
volume 
concentration 
(μm

3
/m

3
) 

0.01-0.2 lognormal 0.03 0.02 

real part of refractive index 1.33-1.42 normal 1.36 0.01 

imaginary part of refractive index 0-0.01 lognormal 0.0015 0.001 

mixed 
aerosols 

lognormal 
bimodal size 
distribution 
parameters 

fine mode mean 
radius (μm) 

0.1-0.25 lognormal 0.18 0.03 

fine mode width 
(μm) 

0.3-0.7 lognormal 0.46 0.04 

fine mode volume 
concentration 
(μm

3
/m

3
) 

0.01-0.15 lognormal 0.03 0.03 

coarse mode mean 
radius (μm) 

1.7-4 lognormal 2.84 0.31 

coarse mode width 
(μm) 

0.6-0.8 lognormal 0.76 0.05 

coarse mode 
volume 
concentration 
(μm

3
/m

3
) 

0.01-0.2 lognormal 0.038 0.04 

real part of refractive index 1.38-1.55 normal 1.44 0.02 

imaginary part of refractive index 0-0.01 lognormal  0.011 0.007 

surface properties  
(open ocean) 

 

wind speed (m/sec) 6.5-7.5 uniform  

chlorophyll concentration (mg/m
3
) 0.07-0.2 uniform  

atmospheric gases 
concentrations 
 

 

water vapor (cm/atm) 1.5-3.5 uniform  

ozon (Db) 240-300 uniform  

nitrogen dioxide (ppm) 0.05-0.1 uniform  

    MBL height (m) 200-1500 uniform  

geometry of the 
measurement 

sun zenith angle (degrees) 25
o
-55

o
 uniform  

viewing angles (degrees) 20 angles from 
-55

o
 to -35

o 
none (fixed 

values) 
 

difference in azimuth between the 
sun and the RSP (degrees) -10

o
 - +10

o
 uniform  

RSP height (m) 4000 
none (fixed 

value) 
 



Table 2.   Neural Network Input / Output  

Input    (light properties) Output    (aerosol properties) 

before PCA (240 variables) after PCA (100 PCs) 

aerosol optical depth at 550 nm 

  
Intensity 

  
6 RSP channels (410, 470, 
550, 865, 1590, 2250 nm) 

  
40 PCs of Intensity 

lognormal bimodal size 
distribution parameters 

fine mode mean 
radius 

20 view angles (from -55
o
 to 

-35
o
 degrees) 

fine mode width 

Linear 
Polarization 

6 RSP channels (410, 470, 
550, 865, 1590, 2250 nm) 

60 PCs of Linear 
Polarization 

coarse mode 
mean radius 

20 view angles (from -55
o
 to 

-35
o
 degrees) 

coarse mode 
width 

real part of refractive index 

imaginary part of refractive index 

 
 

For the elimination of collinearities in the input 
variables we perform Principal Component Analysis 
(PCA) (Jolliffe 2002) and reduce the redundancy to 
acceptable levels. The result is the transformation of the 
input variables to their Principal Components (PCs) 
which retain the information of the original variables, 
while they are orthogonal and thus free of any 
collinearities. We find first the PCs using the noise-free 
version of the simulated dataset. Then, the input to the 
NN is the projection of the noisy data on the calculated 
PCs space. We use the noise-free version of the 
dataset instead of the noisy dataset, since in this case 
the calculated PCs are closer to the real dataset 
structure and are not affected by the noise. This is 
especially true for the PCs that express the finer 
structures, although such structures are masked by the 
noise anyway.  

We perform the PCA separately for the intensity and 
the linear polarization variables. The selection of the 
PCs is based on the percentage of the total variance 
they explain (Jolliffe 2002). Thus we keep the first forty 
PCs of the intensity variables and the first sixty PCs of 
the linear polarization variables, which are enough to 
explain practically 100% of the total variance. The noisy 
data are then projected on the space of the selected 
PCs and this new dataset is the input to our NN. The 
output data do not present any collinearities, thus no 
preprocessing is necessary for them. 
 
 
3. DISCUSSION OF THE RETRIEVAL RESULTS 

 

We have tested the performance of our neural 
network on one thousand cases (~15% of the total 
dataset). We found that all the retrieved aerosol 
parameters have a RMSE above 0.97. Specifically, the 
AOD at 550 nm is retrieved with an RMSE of 0.98 
(Figure 1). In the figure, the “true values” are the AOD 

values used for simulating the testing dataset and the 
corresponding “retrieved values” are the calculated 
values from the NN. The rest of the aerosol properties 
are calculated with high accuracies as well (Figure 2). In 
particular, the imaginary part of the refractive index and 
the width of the coarse mode are retrieved with a RMSE 
of 0.99. The real part of the refractive index and the 
mean radius of the fine and coarse modes are retrieved 
with a RMSE close to 0.98. Lastly, the width of the fine 
mode is retrieved with a RMSE of 0.97. 

 
 

 
 

Figure 1. The neural network retrieval of AOD at 550 

nm. The red line is the 1-1 line. 
 
 

The promising preliminary results reported in this 
work indicate that the proposed retrieval method has the 
potential for real-time evaluation of the aerosol 
properties. Further improvements with the use of a more 
realistic simulated dataset, as well as real RSP and APS 
data, are expected to cure the deficiencies of this first 
attempt.  
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Figure 2. The neural network retrieval of the aerosol microphysical properties: (a) real part of the refractive index, (b) 

imaginary part of the refractive index, (c) mean radius of the fine mode, (d) width of the fine mode, (e) mean radius of 
the coarse mode and (f) width of the coarse mode. The red line is the 1-1 line. 
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