

Denise Hagan¹, Degui Gu¹, Gene Kratz², Denis Tremblay³, Xia-Lin Ma¹, Wen-Hao Li¹ ¹Northrop Grumman Aerospace Systems, ²Raytheon Information Systems, ³Science Data Processing Inc.

This poster describes a plan for validating the CrIS spectral radiances using Earth scenes. The Cross-Track Infrared Sounder (CrIS) will fly on the National Polar-Orbiting Operational Environmental Satellite System Preparatory Project (NPP) in 2011. The CrIS is a Michelson interferometer measuring the spectral calibration relies on an on-board laser metrology system whose stability is monitored using a reference neon wavelength. The instrument line shape parameters for CrIS were determined pre-launch and are not expected to vary significantly post-launch. However, initially on-orbit it may be necessary to adjust for shifts in the reference neon wavelength and the center FOV alignment to the interferometer boresight. Periodic checks of spectral stability will be performed using Earth scene atmospheric reference lines in the longwave region of the CrIS spectrum. The objective is to validate to much better than 10 ppm uncertainty (2 ppm desired) the channel centers of the CrIS calibrated radiances, and update the FOV position information used by the SDR algorithm for the spectral correction. The development of the EUMETSAT MetOp-A Infrared Atmospheric Sounding Interferometer (IASI) clear sky spectral radiances as proxy for CrIS.

CrIS Sensor Overview: The CrIS is a Michelson interferometer covering the spectral range of 3.9 to 15.4 µm (650 to 2550 cm⁻¹). CrIS provides cross-track measurements of top-of-atmosphere (TOA) radiances to permit the calculation of vertical profiles of temperature and moisture in the Earth's atmosphere. There are three bands in the CrIS spectral range each having different spectral resolutions: long-, mid-, and short-wave (denoted as LWIR, MWIR, and SWIR, respectively).

• ATMS

CrIS Swath 2200km

3x3 Array of CrIS FOVs (Each at

14-km Diameter)

Key Technical Aspects of CrIS: Fourier Transform Spectrometer 14 km nadir FOV spatial resolution Fields of Regard with 3 x 3 FOVs Photovoltaic Detectors in 3 bands 4-Stage Passive Detector Cooler 2200 km swath width On-board internal calibration target (ICT Supplier: ITT

		Ρ	erfor	ma	nce Requi	irements	5
	Ba	and	Wav (cm-	relen 1)	gth Range (μ m)	Sampling (cm-1)	No. Chan.
	SV MV LV	WIR WIR WIR	2155-2 1210-1 650-1	550 750 095	4.64-3.92 8.26-5.71 15.38-9.14	2.5 1.25 0.625	159 433 713
Band	Absolute Radiome	te netric	;				Spectr
IWIR	Uncertai	ainty			ILS Shape		<1.5% ideal o
	0.500/			-			

			Syst			L from
The required system spectral			Spectral U 10 p	ppm		
uncertainty allocation.			SDRP3546	6.0 ppm LWIR (worst	FOV)	
resulting from combined				7.1 ppm MWIR (wors 7.2 ppm SWIR (wors	t FOV)	
instrument pre-launch TVAC			RSS	I		
characterization and the SDR					_ / .	
algorithm spectral correction,	Monthly On-or Atmospheric Calil	rbit Interfe bration Spectral U	rometer Jncertainty	Uncertainty After SDR Algorithm		FPA to Interferometer Alignment
includes a term for accurate -	1 ppm	4.5	ppm	Spectral Correction 8.9 ppm		1 ppm
atmospheric calibration to	Per Cal/Val Plan	1.0 ppm	<u> </u>	TP8195940 5.5 ppr	n LWIR (worst FOV)	< 0.7 ppm
update the II S parameters if			l	6.7 ppr	n SWIR (worst FOV) Crelescope focal length

Laser Metrology Spectral Calibration System

 $\bigcirc\bigcirc\bigcirc\bigcirc$

 $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$

The wavelength measurement system provides a laser wavelength measurement based on the comparison of the wavelength of the metrology laser and a filtered neon lamp. The filtered neon lamp is injected in the interferometer with the same optical path as the metrology laser. Metrology detectors convert the optical signal to an electrical signal. This occurs nominally once per orbit, to determine precise metrology laser wavelength based on neon reference wavelength (at ~703.45 nm).

Criteria for Spectral Calibration Using Earth Scenes

Use LWIR spectral regions with well separated line features, relatively free of continuum effects

needed. The on **ILS** parameter w shift due to laur is FOV offset. T change by 3 ppn retuning instrun shape (ILS) para

ly sensitive	 Sensine Packet Parameters Updated per band Effective neon wavelength FOR centering (X & Y) 		- Launch vibra - Final operation Worst FOV each Band					
vincii may	Spectral Errors Corrected by 1 st On-orbit Engineering Packet Update - Optical misalignments from launch vibration, final average op orbit		RSS (Tanuoni a	x DIAS III 3	same FOV)			
nch vibration	operating temperature & gravity unloading - EPA to interferometer IR boresight (EOR centering)	Standard De	viation of All	II Bias Error Across All				
nis can	 Neon to interferometer IR boresight(effective neon wavelength) Laser to interferometer IR boresight(effective neon wavelength) 	Gas Lines 1 SDR Algorith	Tested After	Ga SDI	as Lines Teste R Algorithm C	ed After orrection		
m without	 Neon beam divergence change(effective neon wavelength) 	6.3 pp	om rms		6.3 ppm			
nent line	- Spectral Errors Corrected by 30 day Engineering Packet Updates	L	WIR <u>1.4 ppm</u> WIR <u>2.6 ppm</u>	z	LWIR MWIR	5.3 ppm 6.1 ppm		
ameters.	 Long term neon glow displacement drift from bulb aging(effective neon w FPA to interferometer IR boresight drift from porchswing flexure aging(F 	wavelength) FOR centering)	SWIR 6.4 ppm		SWIR	2.1 ppm		
			Gas	Cell ILS	3 Test Result			
			fron	n TVAC	(Worst FOV)			

On-orbit ILS Tuning Process

Observed Earth spectrum is compared to a "Truth" spectrum

EDR algorithm provides Truth spectrum on user grid via temperature, moisture and pressure profile retrieval combined with Optimal Spectral Sampling (OSS) forward radiative transfer model

EDR algorithm applies Hamming or Blackman-Harris apodization to SDRs in order to generate an Observed spectrum

- Observed & Truth spectra are interpolated to 1 ppm resolution
- Line centers are determined for Observed and Truth spectra
- Differencing generates a ppm error for each line center

FOV 5 (center FOV in FOR) offset correction in urad is determined as well as neon wavelength correction based on ppm errors from each FOV

Initial on-orbit tuning of ILS parameters will be performed but adjustments are expected to be small:

Effective neon wavelength adjustment < +/-2 ppm

- FOV 5 centering to instrument boresight <110 urad or <3 ppm in spectral error
- No adjustment of band to band relative neon wavelength is planned
- Any ppm adjustment determined for LWIR will be applied to MWIR and SWIR bands, while retaining the relative neon offsets determined from ground testing

Subsequent checks are planned every 30 days primarily for validation purposes

Processing Method

Use multiple line features in emission and absorption spectral regions:

 CO_2 Emission Region (671 cm⁻¹ to 690 cm⁻¹)

CO₂ Absorption Region 722 cm⁻¹ to 759 cm⁻¹

Single Water Vapor Line at 784.3 cm⁻¹

Achieve needed S/N Ratio of ~900 via multi-scene processing (15-20 CrIS scanlines, focusing on near nadir Earth scenes) (S/N equivalent to amount of interpolation needed between adjacent channel centers to resolve 1 ppm) Adjust MWIR and SWIR by equivalent values determined from LWIR spectra

Earth Scene Selection Criteria

Ocean only scenes in bulk latitudes (+/-45° of Equator) Near nadir views (FORs 13, 14, 15, 16, 17, 18) Low thermal contrast test for 9 FOVs in a FOR (possibly use IR clear scene classification in EDR algorithm) Compare EDR derived SST and/or atmosphere-corrected window radiances which closely match NWP SST (within 3°C)

Process selected clear -sky ocean scene SDR granules using operational EDR code, retaining forward model calculated radiance spectra and radiance residuals as outputs

Compare selected line centers of Truth spectra with Observed spectra, assuming error tolerance of about 100 ppm Interpolate observed SDR radiance data and forward model 'truth' data using sinc interpolation method Estimate line centers of interpolated data, based on minimum and maximum criteria, and determine averages of line center errors for dataset

Use ppm errors in corner and side FOVs of CrIMSS FOR to determine ILS center FOV 5 offset in urad for in-track and cross- track axes

Use ppm error in center FOV to determine neon wavelength adjustment in ppm

	Approximate	line centers	used for Spect	ral Calibration	on (default valu	ies in cm ⁻)	
671.32	emission	723.88	absorption	743.8	absorption	758.8	absorption
672.88	emission	725.52	absorption	745.36	absorption		
676	emission	727.08	absorption	746.84	absorption	784.32	absorption
677.6	emission	728.52	absorption	748.36	absorption		
679.2	emission	730.08	absorption	749.84	absorption		
680.76	emission	731.6	absorption	751.36	absorption		
682.36	emission	733.24	absorption	752.84	absorption		
684	emission	734.76	absorption	754.32	absorption		
685.6	emission	736.2	absorption	755.8	absorption		
687.2	emission	737.72	absorption	757.28	absorption		

LWIR Spectral Region and Absorption/Emission Lines for Spectral Validation

All brightness temperature spectra for Data Granule #140. Each CrIS proxy (IASI) data granule contains about 600 spectra. Only spectra with maximum brightness temperature, that meet CrIS FOR spatial uniformity criteria, will be used in spectral validation analyses.

AMS 91st Annual Meeting Poster #651

Emission Region

SUMMARY

A plan for developing spectral validation of CrIS radiances using Earth scenes is being implemented

MetOp IASI data for the JPSS Cal-Val 'Focus' Day October 19, 2007, provide CrIS proxy data for the spectral calibration tool development work

The goal is to develop a procedure that can be automated to support ILS updates as needed for the CrIS SDR engineering parameter (packet) files

Acknowledgement

The authors acknowledge the work carried out by Joe Predina of ITT Geospatial Systems in the development of the CrIS Onorbit and Spectral Calibration Validation and Maintenance Recommended Operating Procedure.