

Hosted Payload Lessons

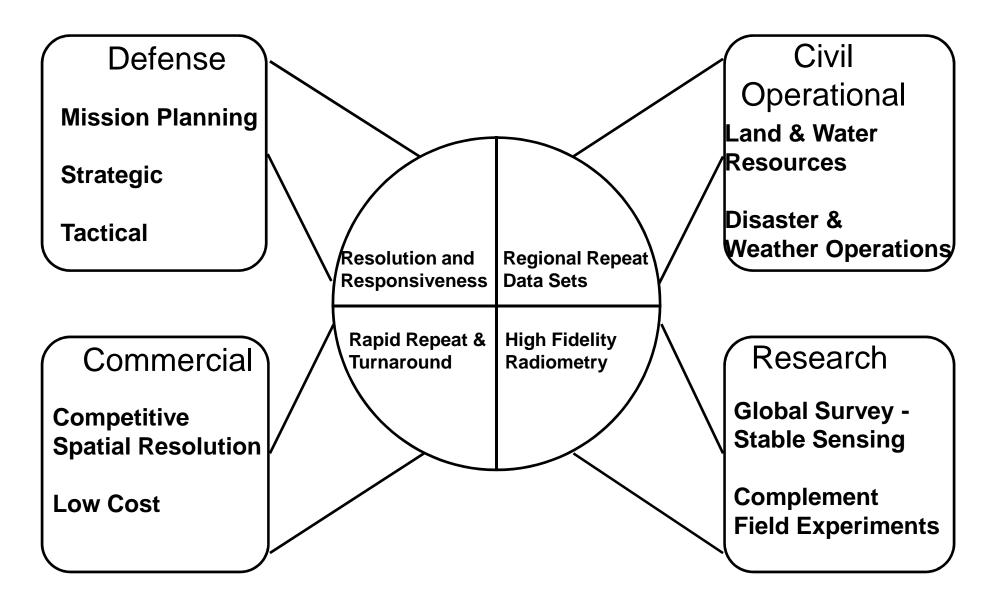
Carl Schueler
Orbital Sciences Corporation

Schueler.carl@orbital.com

805-895-8425

Poster 277a AMS 8th Symposium on Space Weather

Abstract

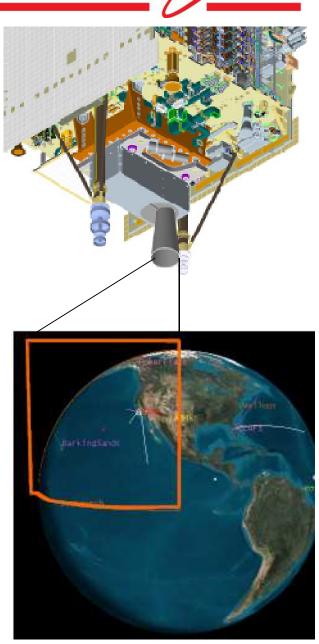


- Commercial satellites can host remote sensing at dramatically lower cost than dedicated missions
- Air Force's Commercially Hosted Infrared Payload (CHIRP) to demonstrate commercially hosted geostationary remote-sensing this year*
- CHIRP, in S/C I&T, is confirming advantages of commercial hosting & providing lessons to mitigate real & perceived disadvantages relative to dedicated missions
- This poster focuses on hosted payload lessons

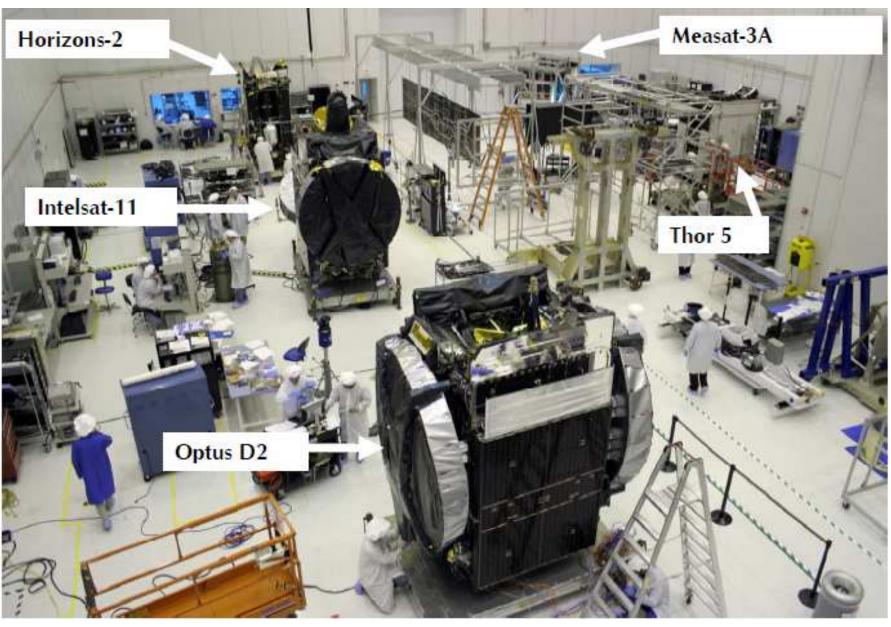
*Brinton, Turner, "Industry Banking on Market for Hosted Payloads," Space News, 6 October 2008

GEO Addresses Requirements

Many GEO Hosted Payload Applications


- Inter-Satellite Communication Links
- Military UHF SATCOM Augmentation
- Missile Warning
- Prototype Technology Demonstrations
- Space Environmental Sensors
- Space Situation Awareness
- Science Experiments
- Weather Sensors

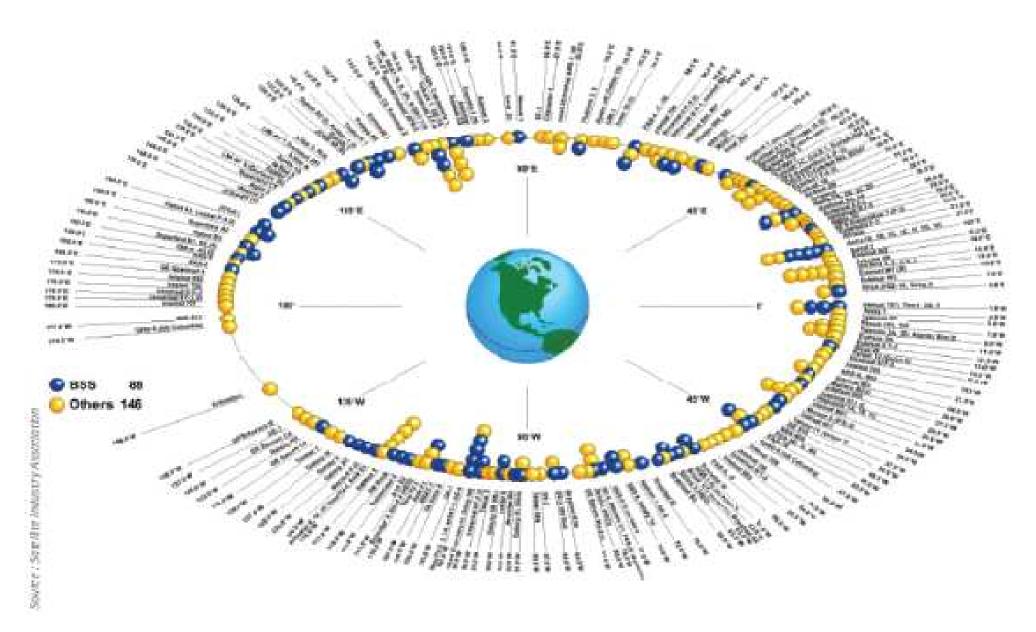
CHIRP Example


- Commercially Hosted Infrared Payload (CHIRP), US Air Force experiment CY-2011
- Gary Payton, USAF, Oct 2008 (Brinton): "The deal...was fantastic...a fourth-of-world view at geo & a year...of data...for less than the cost of a launch vehicle."
- ●US DOC Office of Space Commercialization (http://www.space.commerce.gov/general/commercialpurchase/hostedpayloads.shtml):

 "Air Force expects...major cost savings...
 They estimate...\$500M to launch a dedicated free flyer to satisfy 100% of technical questions...hosted payload ended up costing \$65M & should satisfy 80% of technical questions."

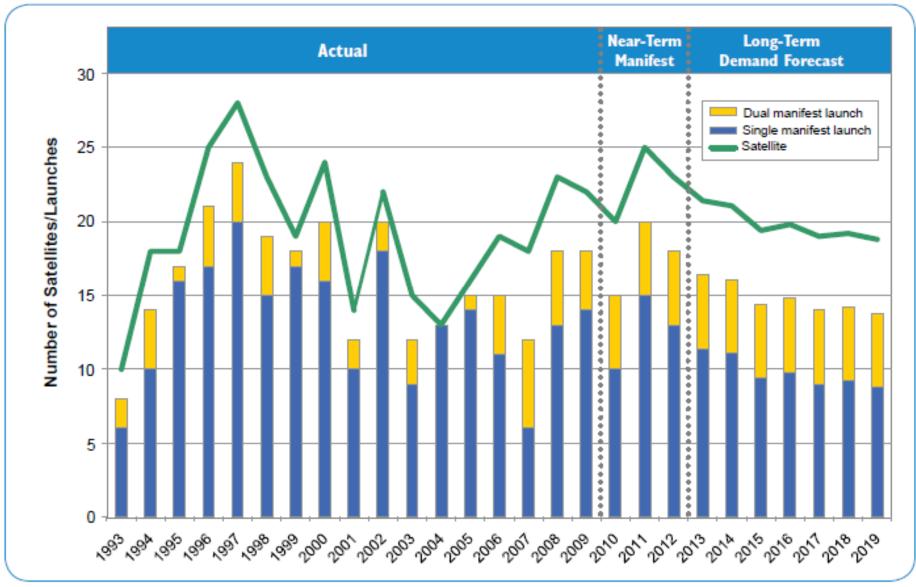
Orbital GEO Satellite Factory Flow

GEO Issues

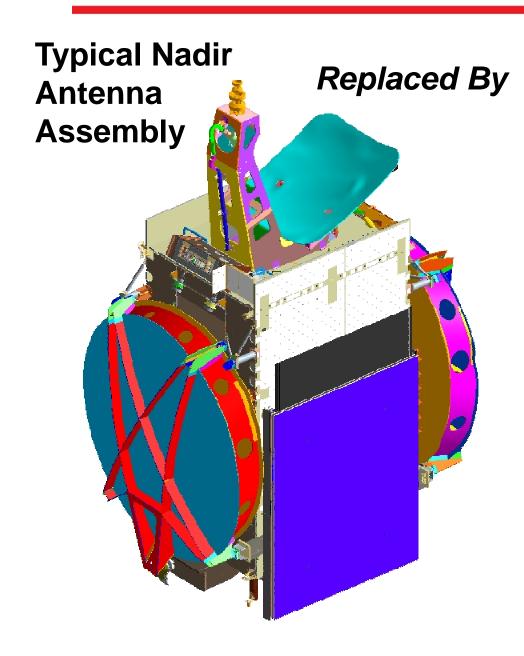

- Commercial GEO operators seek more revenue
- Government agencies cannot satisfy GEO mission demand
- Increasing data rates

Commercially Hosted Payloads Orbital

- Provide added revenue for satellite operators
- Dramatically cut cost to payload providers
- Offer almost unlimited bandwidth at reasonable cost

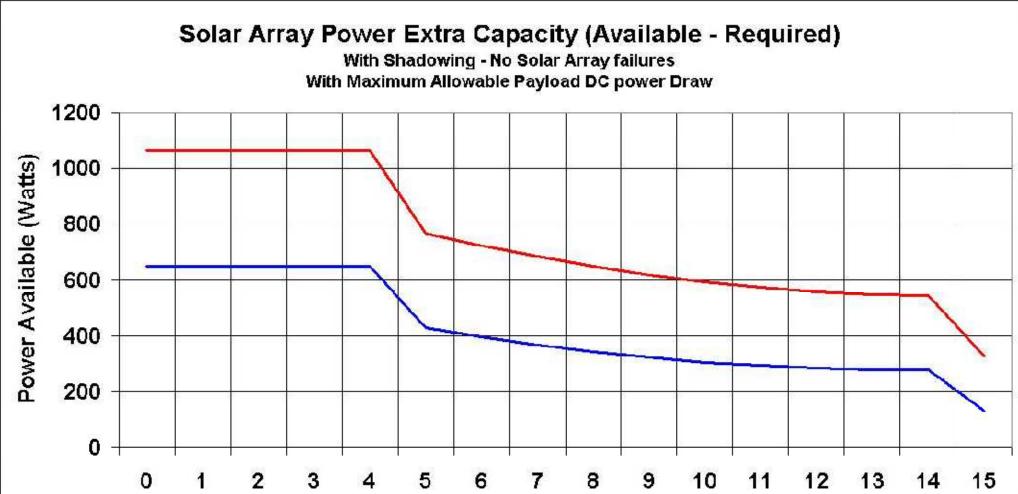

GEO Fleets Require Continuous Replenishment

~20 Annual GEO Host Opportunities



Federal Aviation Administration (FAA):
May 2010 Commercial Space Transportation Forecasts
October 2010 Semi-Annual Launch Report

Hosted Payload Approach



Plenty of Power

— June Solstice — September Equinox

Time in Orbit (Years)

Stable Commercial GEO S/Corbital

For Payload Sensor Integration Time = 2 Seconds

ACS Measure of Performance	STAR-2.2M Performance
Attitude Control	16 Arc-Sec (3σ)
Attitude Knowledge	16 Arc-Sec (3σ)
Low Frequency Jitter (0.1 – 0.5 Hz)	0.93 Arc-Sec (3σ) or 1.86 Arc-Sec (3σ) peak-to-peak
High Frequency Jitter (> 0.5 Hz)	0.55 Arc-Sec (3σ) or 1.1 Arc-Sec (3σ) peak-to-peak

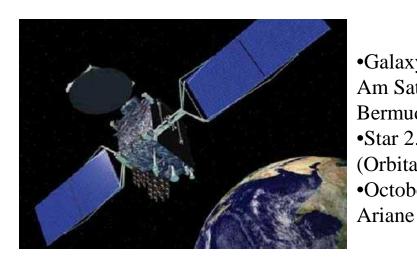
For Payload Sensor Integration Time = 0.5 Seconds

ACS Measure of Performance	STAR-2.2M Performance
Attitude Control	16 Arc-Sec (3σ)
Attitude Knowledge	16 Arc-Sec (3ஏ)
Low Frequency Jitter (0.4 – 2.0 Hz)	0.55 Arc-Sec (3σ) or 1.1 Arc-Sec (3σ) peak-to-peak
High Frequency Jitter (> 2.0 Hz)	0.2 Arc-Sec (3σ) or 0.4 Arc-Sec (3σ) peak-to-peak

TRL7 Demos: Ideal Commercial Hosting Application

TRL 6 to 7 "Brick Wall" Hampers New Space Component Development:

Г	TRL 1	Basic Principles Observed and Reported
	TRL 2	Technology Concept and/or Application Formulated
	TRL 3	Analytical and Experimental Critical Function and/or Characteristic Proof-of-Concept
	TRL 4	Component and/or Breadboard Validation in Laboratory Environment
	TRL 5	Component and/or Breadboard Validation in Relevant Environment
	TRL 6	System/Subsystem Prototype Demonstration in Relevant Environment (Ground or Space)
	V	


TRL6 to TRL7 "Brick Wall": Limited & Expensive Space Test Opportunities

- TRL 7 System Prototype Demonstration in a Space Environment
- TRL 8 Actual System Completed & "Flight Qualified" by Test & Demonstration (Ground or Space)
- TRL 9 Actual System "Flight Proven" Through Successful Mission Operations

FD 15

Commercially Hosted Payloads tear down TRL 6 to 7 Brick Wall!

In Orbit: Geostationary Communication & Control Segment (GCCS)

•Galaxy 15 Pan Am Sat, Bermuda •Star 2.2 (Orbital) •October 2005

- •Anik F1R Telesat Canada
- •Eurostar 3000 (EADS-Astrium)
- •September 2005 Proton
- Foreign satellites host US government owned & operated payloads!
- •Intelsat Galaxy 15 & Telesat Anik F1R host GCCS Wide Area Augmentation System (WAAS)
 - Operational payloads sponsored & operated by the US Federal Aviation Administration (FAA)
 - Essential to international aviation navigation, reliability & safety
 - Millions depend on these hosted payloads every day!
 - Launched by foreign rockets:
 - Galaxy 15 by Ariane 5GS
 - Anik F1R by Proton M Briz M

Not New! Examples Abound... Orbital

MISSION	Operator	Hosted Payload Type
Galaxy 15	Intelsat	Operational (FAA Navigation)
Anik F1R	Telesat	Operational (FAA - Navigation)
Intelsat 14	Intelsat	Technology Demonstration (Defense – Comm.)
GSAT-2	ISRO	Science (Solar and Space Physics)
GSAT-4	ISRO	Science (Astronomy - Navigation)
INSAT-2E	ISRO	Science & Operational (Meteorology)
INSAT-3A	ISRO	Science & Operational (Meteorology and Geology)
INSAT-4G	ISRO	Technology Demonstration (Navigation)
COMS1	KARI	Technology Demonstration (Oceanography, Meteorology)

Who Benefits & How Orbital

U.S. Government Organizations	Possible Mission Type
NOAA	Remote sensing/ observation instruments
NASA SMD	Remote sensing/ observation instruments
NASA/GSFC	Science, technology development, RS/EO instruments, communications
NASA ESMD	Various payload types
DOE/National Labs	Science and technology development
NSF	Science and technology development
NGA	Imaging, remote sensing
FAA Global Navigation Satellite Systems Group	WAAS transponders
DHS/USCG	AIS hosted
ORS Office	Various responsive payloads
USSTRATCOM	Communications, technology development
AFRL	Technology development
NRL	Technology development
DARPA	Technology development
MDA/SMC Missile Defense Space Systems Office	Detection, remote sensing, technology development
SMC/MILSATCOM Systems Wing	Communications, transponders
SMC/GPS Wing	Navigation, NUDET
SMC/Space Superiority Wing	Remote sensing, detection, counterspace
SMC/Development and Testing Wing & STP	Technology development/experiments
SMC/SBIRS Wing	IR sensors
NSSO	Various military payload types
NRO	Imaging, remote sensing, communications

Conclusion

- Mission success possible without Budget for launch or spacecraft!
- You can have it all:
 - > Fast access to space!
 - > Mission accomplishment!
 - >Low cost!