

Climatology, Variability and Change In Arctic Surface-Based Inversions

Dian J. Seidel

NOAA Air Resources Laboratory

Yehui (Ally) Zhang

Applied Hydrometeorological Research Institute
Nanjing University of Information Science & Technology

Chris Golaz

NOAA Geophysical Fluid Dynamics Laboratory

Clara Deser, Bob Tomas

NCAR Climate and Global Dynamics Division

Key Points

- Little prior study of large-scale planetary boundary layer climatology
- Arctic surface-based inversions (SBI) are common, especially in autumn and winter
- SBI characteristics are sensitive to vertical resolution
- 2 climate models and ERA-Interim simulate radiosonde-observed seasonal and spatial SBI patterns, but with biases
- Detecting multi-decadal SBI trends is challenging

Motivation and Context

- Planetary boundary layer controls many climate processes
- Little evaluation of PBL representation in climate models
- Overall aim – characterize global PBL climatology
 - Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis.
Seidel, D. J., C. O. Ao, and K. Li, JGR (2010)
 - **Climatological characteristics of Arctic and Antarctic surface-based inversions.**
Zhang, Y., D. J. Seidel, J.-C. Golaz, C. Deser, R. A. Tomas, J. Climate (2011)
 - **Challenges in estimating trends in Arctic surface-based inversions from radiosonde data.**
Zhang, Y., and D. J. Seidel, GRL (2011)
 - **Climatological variations in planetary boundary layer mixing heights over the continental United States and Europe.**
Seidel, D. J., Y. Zhang, A. Beljaars, J.-C. Golaz, A. Jacobson, B. Medeiros, S. Park, submitted to JGR

Complex planetary boundary layer structures

2000

Data

Type	Name	Period	Horizontal Resolution	Vertical Resolution (# levels <500 mb)
Radiosonde	IGRA*	1990-2009	113 Arctic stations [19 Antarctic stations]	10-30
Climate Models	GFDL - AM3	1990-	2°lat × 2.5°lon	15
	NCAR - CAM3	2007	~ 1.4° lat & lon	8
Reanalysis	ERA-Interim	1990-2009	1.5°lat & lon	16

* NOAA/NCDC Integrated Global Radiosonde Archive (Durre and Yin, 2008)

Surface-Based Inversions (SBI)

Example: Alert, Canada (82N, 62W)
1200 UTC 14 February 2009

- We computed 3 SBI parameters:
 - ❖ Frequency $\rightarrow f$
 - ❖ Depth $\rightarrow \Delta z$
 - ❖ Intensity $\rightarrow \Delta T$
- We examined:
 - Seasonal Variations (focus on winter)
 - Spatial Variations (focus on Arctic)
 - (Differences Between 12 and 00 UTC)
 - Obs/Model Differences
 - Possibility of Detecting Trends

Embedded non-inversion layers < 100 m allowed

Sounding Resolution Affects SBI Characteristics

1983 Changes In
Average Values

$11 \rightarrow 16$ levels

$16 \rightarrow 25$ %

$456 \rightarrow 131$ m

$2.5 \rightarrow 1.2$ K

SBI characteristics at Jan Mayen, Norway (71N, 9W), 1963-2009

1983 increase in vertical resolution of soundings

1990-2009 Arctic SBI Climatology

From Radiosondes

Frequency

%

Depth

100 m

Intensity

K

Intensity

46%

356 m

6.1 K

Median Values

Arctic SBIs
common in
**winter and
autumn**

Frequency - Winter

Frequency - Spring

Frequency - Summer

Frequency - Autumn

SBI Annual Cycle Relations

Fairbanks, Alaska

(Most Arctic stations show similar annual cycles)

SBI characteristics are positively correlated

Negatively correlated with surface temperature

Obs/Model Comparisons: SBI Frequency in Winter

- Similar spatial distributions (and seasonal patterns)
- ERA-Interim agrees well with (assimilated) observations
- Climate models underestimate SBI frequency
- ERA-Interim shows higher Arctic Ocean SBI frequency than climate models

Winter Arctic SBI Depth and Intensity

- Model and reanalysis spatial patterns match observations.
- NCAR SBIs are deeper, perhaps due to lower vertical resolution.

Trends in Arctic SBIs

- Previous studies report inconsistent results for limited regions (Bradley et al. 1993, Walden et al. 1996, Kahl et al. 1996, Bourne et al. 2010)
- Most ignore data homogeneity, so trends are suspect

- Of 113 stations, we judged 19 homogeneous for 1990-2009

Key Points

- Little prior study of large-scale planetary boundary layer climatology
- Arctic (and Antarctic) surface-based inversions (SBI) are common, especially in autumn and winter
- SBI characteristics are sensitive to vertical resolution
- 2 climate models and ERA-Interim simulate radiosonde-observed seasonal and spatial SBI patterns, but with biases
- Detecting multi-decadal SBI trends is challenging

Thank you!

1990-2009 Seasonal Trends at a Few Stations

SBI intensity trend is **positively** related with SBI depth trend, but **negatively** related with the surface temperature trend

June
Polar Day

Differences:
 $SBI f_{12z} - f_{00z}$

December →
Polar Night

- SBI frequency in December shows **near-zero differences**
- In Arctic summer (day), **solar elevations angles** are higher at 0000 UTC near the International Dateline, and solar heating reduces the tendency for SBI formation

Winter Antarctic SBI climatology

- Only coastal radiosonde stations
- Big land/sea contrast in models
- Simulations of Antarctic more disparate than Arctic

SBI Annual Cycle Relations

SBI characteristics are **positively** correlated.

$r(f, \Delta z)$

$r(f, \Delta T)$

$r(\Delta z, \Delta T)$

SBI characteristics are **negatively** correlated with surface temperature.

