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@ The seafloor geoacoustic properties are supposed known

@ Find the sound speed profile ¢ from received data

@ Forward model (WAPE+NLBC) p = G(c), f = 500Hz
@ Inversion processus: variational method
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@ The seafloor geoacoustic properties are supposed known

@ Find the sound speed profile ¢ from received data

@ Forward model (WAPE+NLBC) p = G(c), f = 500Hz
@ Inversion processus: variational method
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Variational method

@ Minimizing a cost function (accurate phase) (Collins et al. 1992)

;
Jo(€) = min|[Poss — Ap| 2 & Jo(c) = uR— BFP
e p = G(c) predicted vector at the VRA positions
e R= pobspzbs spatial covariance matrix
o R approximated from measured acoustic signals
si(t), j=1,...,32 (Hermand and Gerstoft 1996)
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Variational method

@ Minimizing a cost function (accurate phase) (Collins et al. 1992)

(@) = i pass — I & Uo(c) = uR — EIFE

e p = G(c) predicted vector at the VRA positions

e R= pobspzbs spatial covariance matrix

o R approximated from measured acoustic signals
si(t), j=1,...,32 (Hermand and Gerstoft 1996)

@ The gradient of J,(c) - Adjoint by YAO (Thiria et al. 2006 and
Nardi et al. 2009)
Vedo =GV,

where G = %—f : linear tangant, G' its adjoint and

_ _Rp , (p'RR)P
Vedo = —TpiE T i
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Variational method - Regularization

@ SWAT inverse problem is ill-posed
@ Measurements are noisy
s(t) = s(t) +e(t), e(t) Gaussian noise



Variational method

Variational method - Regularization

@ SWAT inverse problem is ill-posed
@ Measurements are noisy
s(t) = s(t) +e(t), e(t) Gaussian noise

@ Regularization:
e Background term ¢ < A(cyp, B) (Bayesian formalism)
(c—cp)B (c—cp)
e Dimensional reduction by Emperical PCA



Variational method

Regularization - Background terme

@ Cost function with background term :

J(¢) = Jo(c)

@ ¢p background (a priori information)
@ B covariance matrix of the background error : primary role

@ Consistency of increments between neighboring points
@ Consistency of increments between variables
@ Gradient of J
Ved =G'V,do+B"(c—cp)



Variational method

Regularization - Background terme

@ Cost function with background term :

J(€) = do(c)+ %(c— o) B (c— cp)

distance to the background ¢,

@ ¢p background (a priori information)
@ B covariance matrix of the background error : primary role

@ Consistency of increments between neighboring points
@ Consistency of increments between variables
@ Gradient of J
Ved =G'V,do+B"(c—cp)
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Regularization - Empirical PCA

@ A4 set of celerity profiles locally representative of the problem
@ Basis of PCA
q
c=co+ Y al,g<M
i=1

where U; Eigenvectors of the empirical variance covariance matrix of data of 4



Variational method

Regularization - Empirical PCA

@ A4 set of celerity profiles locally representative of the problem

@ Basis of PCA
q

c=co+ Y al,g<M

i=1

where U; Eigenvectors of the empirical variance covariance matrix of data of 4

@ Cost function without background term
J(a) = do(er+ X1, aU)
@ New control vector a of reduced dimension g, g < M

@ Regularization by reducing the dimension q (g = 3...)
@ No criterion for the choice of g (Filter useful information)



PPCA

Regularization by probabilistic PCA

@ PPCA is a probabilistic interpretation of empirical PCA

@ Introduces a random vector 1 — A((0, /)
@ c=Wn+cp+e, withe— A(0,K%/y)
(by likelihood maximization)

I3
e ¢ — A(cp, B) where B=WW' + 2y

Cp +




PPCA

Regularization by probabilistic PCA

@ PPCA parameters are estimated from the data set 4

e ¢, the data mean

o W=U(L"?—«?l,), U= (U,...,Uy) and L : diagonal matrix
L=(\)

o 1= g X 1 M, where A; : the eigenvalues

@ K2 can be negligible for g < M large enough (k2 ~ 0)
@ New cost function

1
J(M) = Jo(Wn +cb)+§nTn



PPCA

Regularization by probabilistic PCA

@ PPCA parameters are estimated from the data set 4

@ Cp the data mean

o W=U(L"?—«?l,), U= (U,...,Uy) and L : diagonal matrix
L=(A)

o 1= g X 1 M, where A; : the eigenvalues

2 can be negligible for g < M large enough (k? ~ 0)

New cost function

1
J(M) = Jo(Wn +cb)+§nTn

Circumvent the problem of estimating B~ ' and g

The components of | are non correlated

Provides a better preconditioning for the minimization process



Global optimization

Global optimization

linear map

@ Mixture of gaussian

@ Local cost function

J,‘(C) = Jo(C) + (C — Cb7,')TB/_1 (C — Cb,,'), CcC— N(Cb’/, B,')

@ Local cost function by PPCA

Ji(n) = do(Wm+ep)+n'm, M= A(0, lg)

@ Groups and neighborhood <« topological maps



Global optimization

Global optimization - Topological maps

@ Training set 4:

e Medwin formula ¢(z, T(z), S(2))
T(z),S(z) simulated by Mercator Ocean
Area : Mediterranean (Elba Island)
period: 4 years (2003-2006)

Each profile is a daily average
N = 1461 profiles of celerity

@ Topological maps : hexagonal : 10 x 10
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Global optimization

Global optimization - Sea Surface Temperature

Sea Surface Temperature average
and mean deviation by node



Global optimization

Global optimization - Random walk

Global optimization by random walk

Sampling according to the a posteriori probability

O = kp,'L,', i= 1,...,100

k normalization constante

p; a priori information (surface temperature)

L; the likelihood (optimization of the local cost function)



Global optimization

Global optimization - Random walk

@ The a priori p;
_ |SST; — SSTy|
0;

pi = exp( )

@ SST; the surface temperature average of the i-th group
@ 0, the mean deviation of the surface temperature of i-th group
@ SSTj the surface temperature of the desired profile

@ The likelihood L;
Ji(ny)

Li= Cexp(—T), C constante

@ 1 local optimum
@ Tis "the system energy” 0.01 <1t <0.5
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Global optimization - Random walk

@ Random walk = transition rules pj; NN A
Pij Pi



Global optimization

Global optimization - Random walk

@ Random walk = transition rules pj; NN A
Pij Pi
@ pj; transition rules of the a priori p;
@ Transition rules of the a posteriori 6; = kp;L; :
4 Accept i — j with the probability

i b
min(-Z, 1
In(L,', )



Global optimization

Global optimization - Random walk

@ Random walk = transition rules pj; NN A
Pij Pi

@ pj; transition rules of the a priori p;
@ Transition rules of the a posteriori 6; = kp;L; :

4 Accept i — j with the probability

s H
<
min( 1)

@ Define p;

1 Equiprobable choice of a neighbor j of i

2 Accept i — j with the probability min(n;/n;, 1)

3 Accept i — j with the probability min(p;/p;, 1)



Global optimization

Inversion results
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Global optimization

Inversion results
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Conclusion

Conclusion

@ The Probabilistic PCA provides a better preconditioning for the
local minimization process

@ It allows a dimensional reduction and the introduction of the
background term into the cost function

@ The use of oceanic models allows enlarge of the dataset
@ Classification is done by topological maps

@ The local PPCA method is applied on various groups obtained by
the classification

@ The choice of desired celerity profile is done by a random walk



Conclusion
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Conclusion

Thank you!



	Shallow-water acoustic tomography
	The variational method and regularization
	Regularization by Probabilistic PCA
	Global optimization by topological maps
	Conclusion

