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Visualizing Model Forecasts

• Model forecasts are often depicted as Radar
Reflectivity.

• Good for convection/precipitation.
• NWP can now provide guidance about physical

processes not currently associated with precipitation.
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Synthetic satellite

A synthetic satellite visible image can depict model
guidance

(An 24-hour WRF forecast depicted as a satellite visible
channel image)
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More than just precipitation

Information beyond just the precipitation forecast:
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Radiative Transfer Model

Radiative transfer models exist [Heidinger et al., 2006]
Approximately 13 hours are required to compute GOES
0.65µm reflectances for a single WRF output time
(1200x800x35)
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Approximate It!

Neural networks of a certain form can function as a
universal approximator.

y =
M∑

j=1

wjh(
d∑

i=0

wjixi) (1)

y is the output of the NN and the xi are the inputs (there are
d “true” inputs with x0 fixed to be a constant value of 1). The
wji are referred to as the weights and the “transfer function”
h(x) is given by:

h(x) =
1

1 + e−x (2)
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The idea

1 Pick a representative sample of WRF grids
2 Run forward model on them
3 Train NN to predict forward model output from WRF

grids
4 In real time, input WRF to NN, obtain satellite visible

output
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Training dataset

• NSSL-WRF (4 km grid): 1200x800x35; time step=24s
• 18Z-23Z forecasts in one-hour increments on Apr. 3,

1974, July 1, 2009, Aug 12-16 2009 excluding Aug. 15,
2009

• 36 grids total
• 26.5 million pixels: way too many
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Number of input parameters (WRF)

• Fourteen 3D fields such as temperature and
perturbation geopotential

• 67 2D fields such as precipitation and soil moisture
• Total training set: 15 billion points.
• Completely unrealistic

How do we start to reduce the size of dataset?
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How does the forward model do it?

• The forward model uses ice absorption and scattering
properties to compute gas optical depths based on
liquid and frozen hydrometeor species.

• Changes in reflectance due to waves and sun glint
considered

• Simulated skin temperature, atmospheric temperature
profiles used to compute simulated visible reflectances.
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... contd.

Some of those things are, of course, irrelevant.
Turn off sun angle, glint, etc. Run forward model assuming
local noon everywhere (advantage: we’ll get satellite visible
forecasts even at night!)
But use the idea of integrating optical depth.
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Neural network inputs

1 Mixing ratios (kg/kg) of water vapor, cloud water, rain,
cloud ice, snow and graupel vertically integrated by
weighting each layer’s value with the thickness of that
model layer in meters.

2 Mixing ratios above, but using only the top 17 model
layers for the vertical integration.

3 Mixing ratios vertically integrated by weighting each
layer’s value by presssure/temperature instead of by
the thickness of the layer

4 minimum temperature, height of minimum temperature
5 Skin surface temperature (TSK)
6 windspeed
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Histogram equalization and downsampling

Downsample 5 million non-zero points to 1 million using
probabilistic sampling
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... contd. ...

• The likelihood of a grid point with brightness value b
being selected depends on r , the repeat ratio, given by:

r = nS/P(b) (3)

where n is the number of non-zero bins in the
histogram, S the subsampling ratio is 0.2 and P(b) the
probability density of that brightness value

• If the r is, say 0.3, the grid point is selected with a
probability of 0.3.

• If the r is 2.3, the grid point is selected twice and a third
time with a probability of 0.3.
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Neural network training

31 input variables, 3 hidden nodes

With 3 hidden nodes, all errors bounded within 0.1.
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Forward model vs. Approximation (train)
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Forward model vs. Approximation (test)
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Real-time: 24-hour Forecast

Dec. 13, 2010
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Real-time: What happened
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Links

Real-time images:
http://www.nssl.noaa.gov/users/rabin/public html/vis wrf
Full paper: V. Lakshmanan, R. Rabin, J. Otkin, and J. Kain,
“Visualizing model data using a fast approximation of a
radiative transfer model,” J. Atmos. Ocean. Tech., InPress
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