

United Nations Educational, Scientific and Cultural Organization

File

International Center for Integrated Water Resources Management under the auspices of UNESCO

The ICI-WaRM Non-Proprietary Regional Frequency Analysis Tool Using the Method of L-Moments

Data Sites Regior

Justitute for Water Resources Drought Atlas Software (JCJWaRM)

Ьγ

Jason Giovannettone Michael Wright Jason Giovannettone Michael Wright Institute for Water Resources ICI-WaRM

Educational, Scientific and •

United Nations • International Center for Integrated Water Resources Management Cultural Organization • under the auspices of UNESCO

Objective

- Objective: Develop a free tool that uses available rainfall data to create rainfall frequency maps.
- Useful in arid & semi-arid regions.
- Many developing countries are located in dry regions.
- Maps assist in identifying areas vulnerable to climate change impacts on precipitation.
- **Overall Result:** Assist in long-range planning for arid developing countries where changes in rainfall due to climate change can be expected.

International Center for Integrated
Water Resources Management
under the auspices of UNESCO

Rainfall Frequency Map

• Taken from Schafer et al. (2007). "Regional precipitation-frequency analysis and spatial mapping of 24-hour precipitation for Oregon," prepared by MGS Engineering Consultants, Inc. for the Oregon State Department of Transportation, 84 pp.

United Nations • International Center for Integrated Educational, Scientific and • Water Resources Management Cultural Organization • under the auspices of UNESCO

ICIWaRM

ICIWaRM: International Center for Integrated Water Resources Management. Category 2 UNESCO center headquartered at the **Institute for Water Resources** Consortium of universities, U.S. gov't agencies, & NGOs supporting UNESCO's IHP strategic program. Software supports ICIWaRM mission of aiding developing countries in water resources management & contributing to developing nonproprietary analytical tools.

United Nations • Educational. Scientific and •

International Center for Integrated Water Resources Management Cultural Organization • under the auspices of UNESCO

• L-moments are the statistics used to determine the exact shape of the regional frequency. L-Mean, L-Coefficient of Variation, L-Skew, **L-Kurtosis** Developed by John Hosking & James Wallis

Definitions: L-Moments

Educational. Scientific and •

United Nations • International Center for Integrated Water Resources Management Cultural Organization • under the auspices of UNESCO

Definitions: Regional **Rainfall Frequency Analysis**

• Regional rainfall frequency analysis is performed by grouping rainfall data from multiple sites with similar frequency distributions. Caution must be exercised in determining regions (e.g. Are sites only

located on rivers?)

United Nations Educational, Scientific and Cultural Organization

International Center for Integrated Water Resources Management under the auspices of UNESCO

Definitions: Drought Atlas

• A drought (rainfall frequency) atlas is a collection of maps/statistics that reveals the spatial distribution of storm intensities for particular frequencies.

Input Data

	А	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q
					Annual Mean	Annual Mean	Mean Julian	Seasonality	Mean Precipitation	Mean Precipitation	Mean Precipitation	Mean Precipitation	Other (1)	Other (2)	Other (2)	Eco-Regions/	Mean Precipitation
1	Site ID	Latitude	Longitude	Elevation	Temperature	Precipitation	Day	Index	(Winter)	(Spring)	(Summer)	(Autumn)	Other (1)	Other (2)	Other (5)	Own Regions	(Selected Period)
2	ĺ																
3																	
4	8000900	11.13	-74.23	2			233.1929376	0.51710862								61308	200
5	8002200	10.45	-75.52	0			249.9389902	0.490782378								61401	200
6	8002800	10.9	-74.77	15			238.9474185	0.506581731								61308	200
7	8008401	8.12	-76.72	12			214.5577904	0.145107929								60137	200
8	8009100	7.02	-73.8	121			227.525528	0.197161636								60137	200
9	8009400	7.1	-73.2	1104			196.2399141	0.087765357								60136	200
10	8009704	7.6	-72.6	1272			284.5967965	0.117820307								60118	200
11	8009705	7.7	-72.7	1407			303.0542821	0.180009244								60118	200
12	8011202	5.9	-75.7	1496			212.4710466	0.150247982								60109	200
13	8011203	6.2	-75.6	1587			200.7289125	0.146755966								60136	200
14	8011206	6.22	-75.6	1528			209.863921	0.1428942								60136	200
15	8014902	5	-75.6	1295			184.9718123	0.020626232								60109	200
16	8014905	4.9	-75.1	2141			146.9336935	0.00797214								60136	200
17	8014911	4.98	-75.58	1463			228.3568478	0.018161971								60109	200
18	8021000	4.82	-75.8	1186			307.7957521	0.034361705								60109	200
19	8021100	4.5	-75.72	1302			15.41589255	0.073857596								60109	200
20	8021101	4.5	-75.6	2151			325.8450427	0.081081388								60109	200
21	8021400	4.43	-75.15	960			162.8213581	0.030195232								60221	200
22	8021900	4.28	-74.8	284			107.0949758	0.018964508								60221	200
23	8021904	4	-75	326			87.660313	0.062585756								60221	200
24	8021905	3.8	-75	326			344.8226573	0.122110602								60221	200
25	8021906	4.2	-/4.9	330			129.0709464	0.036956398								60221	200
26	8021907	4	-/5	326			90.82839864	0.016099452								60221	200
27	8021908	4.3	-/4.4	15/3			360.5458278	0.146/26016								60136	200
28	8022200	4.7	-/4.13	2550			354.2510090	0.037475064								60136	200
29	8024100	4.55	-/0.92	184			186.0963571	0.392823215								60709	200
30	8025900	3.55	-/0.38	962			52.00408303	0.080219823								60207	200
31	8025901	3.5	-/0.3	1516			43.30027203	0.09678166								60145	200
32	8023902	3.8	-/0.5	1510			212.3094001	0.037714094								60143	200
33	8023903	3.5	-/0.3	991			60.59679506	0.082110351								60207	200
34	8023903	3.4	-/0.4	1727			09.380/8390	0.094100105								60100	200
30	8030800	2.47	-/0.0	1/3/			357.7028545	0.233447300								60109	200
27	9021500	2.43	-/0.36	1005			2 059942076	0.223535050								60221	200
20	0031500	2.57	-73.5	423			260 6692265	0.238072108								60221	200
20	9021502	2.0	-75.5	922			256 2201274	0.106003494								60221	200
40	8033700	5.7 1.57	-73.5	005			109 0627879	0.255437627								60179	200
40	8034200	1.37	-70.00	1915			18 40327922	0.138653879								601/5	200
41	8034200	1.42	-77.47	1913			5 226229721	0.130033878								60145	200
42	8027000	0.82	-77.62	20/3			11 24676114	0.110445082								60145	200
45	9027001	1.02	-77.03	1260			19 64772705	0.115242309								60145	200
I		movyrDa	ta Oth	arData .	Indices SI	heet?	. / 04 / / 5 / 8 1										200

Educational, Scientific and •

United Nations • International Center for Integrated Water Resources Management Cultural Organization • under the auspices of UNESCO

Choose Data

🖳 Initial Data Screening	. 🗆 🗙									
Identify the data to be used.										
Beginning Month (1-12):	2									
Duration in Months (1-60):	3									
Minimum Number of Records (> 4):	40									
Identify the units of the data.										
Precipitation (mm, in., etc.):	mm									
Compute										

- Choose a period to analyze.
- Beginning month = February.
- Period duration = February – April.
- Each site requires 40 good periods of data to be used.

Discordancy

X

SiteDetails

United Nations • Educational, Scientific and •

International Center for Integrated Water Resources Management Cultural Organization • under the auspices of UNESCO

Locations of Discordancy

United Nations Educational, Scientific and •

International Center for Integrated Water Resources Management Cultural Organization • under the auspices of UNESCO

Regionalization

🖳 Form4					_ 🗆 🗙						
Choose method	Choose method for regionalization:										
 Use Si 	te Characteristi	cs		8							
🔘 Use O	wn/Eco-Region	s	Number of	500							
Enter Weight fo	Enter Weight for Each Site Characteristic:										
Latitude:	0.33	Mean Precip (Annual):	0	Mean Precip (Autumn):	0						
Longitude:	0.33	Mean Precip (Winter):	0	Mean Julian Day:	0						
Elevation:	0.34	Mean Precip (Spring):	0	Seasonality Index:	0						
Mean Temp:	0	Mean Precip (Summer):	0								
Other (1):				0							
Other (2):				0							
Other (3):				0							
	Total V	Veight: 1 Reset Weights	Total Weight	is Equal to 1! ок							

Region Details

Educational, Scientific and •

United Nations • International Center for Integrated Water Resources Management Cultural Organization • under the auspices of UNESCO

• A graph of t4 vs. t3 gives an initial impression of which distribution may fit the data best.

Frequency Distributions

Fitting of Probability Density Functions (PDFs)

• The probability distribution function (PDF) for the region can be fit with up to 13 frequency distributions.

Frequency Distributions: Growth Curves

• The Cumulative Distribution Function (CDF) of the PDF is used to compute the **Exceedance** Curve. This curve gives the intensity of rain events with frequencies between 1 year up to 1000 years.

United Nations • International Center for Integrated Educational, Scientific and • Water Resources Management Cultural Organization • under the auspices of UNESCO

Legen d Hkgl :20114.7 Low :0

Preliminary LAC Drought Map

For droughts that occur every 20 years, how much total precipitation can be expected over 5 years?

Source: NOAA's Global **Histórical Climatology** Network

As can be seen here, more data sites are needed to improve resolution and smoothness of contours.

