I. Introduction

Global climate models have a coarse horizontal resolution that does not resolve topography well. By downscaling using regional climate models (RCMs), topography is better resolved and may allow for a better representation of precipitation over topographically varying regions. An objective of the Multi-RCM Ensemble Downscaling (MRED) Project is to answer this question:

Does downscaling using RCMs provide skillful monthly and seasonal forecasts of extreme precipitation compared to the global model and observations?

II. Models

- **Global model**: National Center for Environmental Prediction (NCEP) Climate Forecast Systems version 1 (CFS Native)
- **Regional climate models**:
 - Two versions of the RSM
 - NCEP RSM
 - Experimental Climate Prediction Center RSM (ECPC RSM)
 - Two versions of the WRF model
 - Pacific Northwest National Lab WRF-Advanced Research WRF (PNNL WRF-ARW)
 - Illinois State Water Survey Climate WRF (ISWS CWRF)
 - University of California
 - Colorado State University RAMS (CSU RAMS)
 - University of California-Los Angeles Eta (UCLA ETA)

Observations

- North American Regional Reanalysis (NARR)
- Climate Prediction Center (CPC) US Unified Precipitation (UNI)

III. Method

The NCEP CFS runs ten ensemble members by starting from a different initial date to produce retrospective forecasts from 1982-2003. Each of the CFS ensemble forecasts is downscaled using each of the RCMs over the contiguous United States. The CFS is evaluated both at its native resolution (CFS Native) and interpolated to the MRED grid (CFS MRED). The horizontal resolution of the CFS Native is ~200km, the RCMs, CFS MRED and NARR are 32km and the UNI is ~28km.

IV. Extremes defined

We examined daily accumulated precipitation for the months of January through April and the JFM and FMA seasons. Our focus is on extreme precipitation, defined as greater than 50mm/day. We chose the central Rocky Mountains (Figure 1, red box) to assess the potential usefulness of higher resolution RCMs to answer our research question.

V. Results

Sum of extreme precipitation frequency (Figure 2)

We evaluated the frequency of extreme precipitation in both the model output and after fitting gamma distributions to the output (Figure 2a). The downscaled RCMs produce extreme precipitation (>50mm/day) too frequently while the CFS Native has generated little or no extreme precipitation (Figure 2b).

The ISU MM5 and both of the RSMs have higher modeled frequencies than their corresponding estimated gamma distribution frequencies. The observed frequencies have a similar result. This implies the gamma distribution is not able to represent the more extreme precipitation events in these models and the observations.

V. Results continued

Difference between observed CDF and RCMs CDF (Figure 3)

For February and FMA, several of the RCMs are closer to the UNI observed frequency compared to the CFS Native, meaning the forecast has been aided by downscaling. These results are similar for other time periods, except January and JFM where the impact of downscaling is less (not shown).

CDFs (Figure 4)

The CFS Native has a steeper slope in lower intensity bins (<50mm/day) compared to UNI and most of the RCMs. The downscaled RCMs are distributing precipitation to higher intensities, which may or may not be extreme.

Acknowledgments:

The authors thank the MRED participants for their assistance in providing the daily data and Jon Hobbs for his statistical consultation. MRED is sponsored by grants from the Climate Prediction Program for the Americas and the U.S. National Oceanic and Atmospheric Administration (NOAA).